一寒波、第一點(diǎn)是你要知道什么是屏幕適配
就是們這一群程序猿把設(shè)計(jì)師制作的效果圖應(yīng)用到不同的手機(jī)(規(guī)格鞋真、品牌)崇堰,對(duì)不同的手機(jī)屏幕進(jìn)行界面調(diào)整的過程,確保界面不變形涩咖,呈現(xiàn)設(shè)計(jì)師的效果圖的位置海诲、尺寸、比例檩互、這個(gè)就叫做屏幕適配特幔。
二、第二為什么要做屏幕適配
手機(jī)上運(yùn)行起來效果不是很好闸昨,兼容性不是很好蚯斯,這就需要對(duì)不同分辨率,不同屏幕大小的手機(jī)做屏幕適配這就是我們?yōu)槭裁醋銎聊贿m配
規(guī)格不同 和 手機(jī)的版本兼容性 饵较。
三拍嵌、屏幕適配需要知道的幾點(diǎn)
1.屏幕物理尺寸
屏幕尺寸有5.0、5.1循诉、5.2横辆、5.5、5.7茄猫、5.9狈蚤、6.0等
2.屏幕分辨率
屏幕分辨率是指屏幕顯示的分辨率困肩。屏幕分辨率確定計(jì)算機(jī)屏幕上顯示多少信息的設(shè)置,以水平和垂直像素來衡量脆侮。屏幕分辨率低時(shí)(例如 640 x 480)僻弹,在屏幕上顯示的像素少,但尺寸比較大他嚷。屏幕分辨率高時(shí)(例如 1600 x 1200),在屏幕上顯示的像素多芭毙,但尺寸比較小筋蓖。
顯示分辨率就是屏幕上顯示的像素個(gè)數(shù),分辨率160×128的意思是水平方向含有像素?cái)?shù)為160個(gè)退敦,垂直方向像素?cái)?shù)128個(gè)粘咖。屏幕尺寸一樣的情況下,分辨率越高侈百,顯示效果就越精細(xì)和細(xì)膩
3.屏幕分辨率計(jì)算公式
屏幕分辨率 = 橫向像素縱向像素(或者 寬x高)瓮下,如 10801920
4.px和sp的換算公式
5.勾股定理
勾股定理是一個(gè)基本的幾何定理,指直角三角形的兩條直角邊的平方和等于斜邊的平方钝域。中國古代稱直角三角形為勾股形讽坏,并且直角邊中較小者為勾,另一長直角邊為股例证,斜邊為弦路呜,所以稱這個(gè)定理為勾股定理,也有人稱商高定理织咧。
勾股定理現(xiàn)約有500種證明方法胀葱,是數(shù)學(xué)定理中證明方法最多的定理之一。勾股定理是人類早期發(fā)現(xiàn)并證明的重要數(shù)學(xué)定理之一笙蒙,用代數(shù)思想解決幾何問題的最重要的工具之一抵屿,也是數(shù)形結(jié)合的紐帶之一。在中國捅位,商朝時(shí)期的商高提出了“勾三股四玄五”的勾股定理的特例轧葛。在西方,最早提出并證明此定理的為公元前6世紀(jì)古希臘的畢達(dá)哥拉斯學(xué)派绿渣,他用演繹法證明了直角三角形斜邊平方等于兩直角邊平方之和朝群。 [1]
在平面上的一個(gè)直角三角形中,兩個(gè)直角邊邊長的平方加起來等于斜邊長的平方中符。如果設(shè)直角三角形的兩條直角邊長度分別是
(2)勾股定理運(yùn)算
和
姜胖,斜邊長度是
,那么可以用數(shù)學(xué)語言表達(dá):
勾股定理是余弦定理中的一個(gè)特例淀散。 [1]
5.長方形的特點(diǎn)
(1)兩條對(duì)角線相等右莱;
[圖片上傳失敗...(image-9d3f6a-1556443100431)]
(2)兩條對(duì)角線互相平分蚜锨;
(3)兩組對(duì)邊分別平行;
(4)兩組對(duì)邊分別相等慢蜓;
(5)四個(gè)角都是直角亚再;
(7)具有不穩(wěn)定性(易變形)晨抡;
(8)長方形對(duì)角線=
(9)順次連接矩形各邊中點(diǎn)得到的四邊形是菱形
公式
長方形面積=長×寬
6.’開方和平方的運(yùn)算
(1).
開方(英文rooting)氛悬,指求一個(gè)數(shù)的方根的運(yùn)算,為乘方的逆運(yùn)算(參見“方根”詞條)耘柱。在中國古代也指求二次及高次方程(包括二項(xiàng)方程)的正根如捅。
(2)平方運(yùn)算
1.將被開方數(shù)的整數(shù)部分從個(gè)位起向左每隔兩位劃為一段,用撇號(hào)分開(豎式中的11’56)调煎,分成幾段镜遣,表示所求平方根是幾位數(shù);
2.根據(jù)左邊第一段里的數(shù)士袄,求得平方根的最高位上的數(shù)(豎式中的3)悲关;
3.從第一段的數(shù)減去最高位上數(shù)的平方,在它們的差的右邊寫上第二段數(shù)組成第一個(gè)余數(shù)(豎式中的256)娄柳;
4.把求得的最高位數(shù)乘以2去試除第一個(gè)余數(shù)寓辱,所得的最大整數(shù)作為試商(2×30除256,所得的最大整數(shù)是 4赤拒,即試商是4)讶舰;
5.用商的最高位數(shù)的2倍加上這個(gè)試商再乘以試商.如果所得的積小于或等于余數(shù),試商就是平方根的第二位數(shù)需了;如果所得的積大于余數(shù)跳昼,就把試商減小再試(豎式中(2×30+4)×4=256,說明試商4就是平方根的第二位數(shù))肋乍;
6.用同樣的方法鹅颊,繼續(xù)求平方根的其他各位上的數(shù).
如遇開不盡的情況,可根據(jù)所要求的精確度求出它的近似值.例如求 的近似值(精確到0.01)墓造,可列出上面右邊的豎式堪伍,并根據(jù)這個(gè)豎式得到
筆算開平方運(yùn)算較繁,在實(shí)際中直接應(yīng)用較少觅闽,但用這個(gè)方法可求出一個(gè)數(shù)的平方根的具有任意精確度的近似值.
找了幾個(gè)官方的鏈接
·官方適配