Introduction

1.CNN Locale keypoint
2.Light CNN general design
3.Scale Var Light CNN design

1. CNN Locale keypoint

LF-Net 和 RF-Net都在局部特征點(diǎn)的精度上取得了很高的成績(jī),但是這些網(wǎng)絡(luò)的速度遠(yuǎn)達(dá)不到機(jī)器人SLAM實(shí)時(shí)使用的程度。
受到近年來(lái)輕量級(jí)網(wǎng)絡(luò)設(shè)計(jì)的啟發(fā)良风,我們?cè)贚F-Net 和 RF-Net基礎(chǔ)上改進(jìn)了網(wǎng)絡(luò)結(jié)構(gòu)小槐,面對(duì)通道信息溝通不暢問(wèn)題赵刑,我們借鑒了ShuffleNetV2的思想 耕驰,有效提高了精度和速度痰驱。
針對(duì)LF-Net 和 RF-Net都存在的尺度空間上不平衡的問(wèn)題亡蓉,我們改進(jìn)了提取尺度方式晕翠,得到了有效的解決。
最終我們的成果能夠?qū)嶋H應(yīng)用在SLAM系統(tǒng)中寸宵,并具有很高的精度和魯棒性崖面。

2. Light CNN general design

"Tuning deep neural architectures to strike an optimal balance between accuracy and performance has been an area of active research for the last several years."
To achieve this goal generally there are two approaches, one is to compress pretrained networks which called Model Compression the other is to directly design small networks.
Recently there has been many achievements in faster convolutional blocks, Including SqueezeNet, MobileNetV1/2, ShuffleNetV1/2, IGC v1/v2/v3.
The direct metric depends on many factors such as memory access cost, ...

2.1 Depthwise Separable Convolutions

The basic idea about Depthwise Separable Convolutions is that a full convolutional operator can be split into two separate layers : a depthwise convolution and a 1X1 convolution which called pointwise convolution.

Traditional convolutional operater apply a K*K size kernal to filter all input feature maps, thus each feature map of the output maps contain information from all maps of the input map. For example consider input is a W X H X C size maps, we want output to be W X H X K size, we apply 3 X 3 X K shape convolution kernal, the operation is :


Depthwise separable convolutions are a drop-in replacement for standard convolutional layers.
Firstly, we do a channel-by-channel convolution (Depth-wise convolution), which means for the input feature maps one channel is only filtered by one convolution kernal.
Secondly, after Depth-wise convolution the feature maps are seperated by channels,because "Each feature map of the output maps should contain information from all other maps of the input layer" we do Pointwise convolution
to help output maps exchange information. Pointwise convolution is simplely a 1X1 convolution.

Depthwise Separable Convolutions can not only reduce network parameters but also drop computation costs.

Convolution Size : D_K
Input Channels : M
Output Channels : N
Output feature map size : D_F

Tradition convolution:

parameters:

computation:

Depthwise separable convolution:

parameters:

computation:

So the computational complexity decreases to the original:

2.2 MobileNet

The main idea about MobileNet is :

  1. Use depth-wise convolution operation. Compared with standard convolution operation, under the same parameter number , it can reduce the amount of calculation by several times, so as to improve the speed of network.
  2. To solve the "poor information flow" problem of using depth-wise convolution, MobileNet uses point-wise convolution.

2.3 MobileNet V2

MobileNet V2 mainly solves the problem that V1 is easily degraded in training process, so V2 has improvement compared with V1.

2.4 ShuffleNet

Use group convolution and channel shuffle, thus reduce the cost of 1X1 convolution in MobileNet.
To solve the proble “outputs from a certain channel are only derived from a small fraction of input channels.“
Channel shuffle is as shown below:

Channel shuffle's operation is simple. Like ResNet architecture ShuffleNet create the basic bottleneck unit, and then uses basic bottleneck units stacked to obtain ShuffleNet.

The main contributions in this artical are as follows:

  1. Like MobileNet, depth-wise convolution is adopted in ShuffleNet, but it uses a channel shuffle operation to solve the side effect of depth-wise convolution.
  2. It is critical that tiny networks usually have an insufficient number of channels to process the information.
  3. In terms of network topology, ShuffleNet adopts the idea of resnet, while mobielnet adopts the idea of VGG.

2.5 ShuffleNet V2

Comparison Module Design of ShuffleNet_V2 and ShuffleNet_V1:

ShuffleNet_V2的模塊設(shè)計(jì)與ShuffleNet_V1的對(duì)比

ShuffleNet V2 abandons the 1x1 group convolution operation and directly uses 1x1 ordinary convolution with the same number of input/output channels. It also proposes a new Channel-Split operation, which divides the input channels of module into two parts, one part is passed down directly, the other part is calculated backwards. At the end of module, the output channels from two branches are connected directly, thus avoiding the operation of Element-wise sum in ShuffleNet v1. Then we do the Random Shuffle operation on the output feature maps to get the final output, so that the information between the channels can communicate with each other.

2.6 Conclusion

  • Use Depthwise Separable Convolutions to speed Network
  • Find ways to solve channel information exchange

3. Multi-Scale CNN design

  • 圖像級(jí)別金字塔
  • Feature Map 級(jí)別金字塔
  • Backbone 金字塔
  • 多種融合
(a) No method. (b) Backbone pyramids. (e.g., SSD). (c) Feature pyramids (e.g., FPN). (d) Image pyramids (e.g., SNIP). (e) Image and feature pyramids. (e.g. TridentNet)

LF-Net, RF-Net use feature pyramids
LIFT, Key.Net use image pyramids
SuperPoint, D2-Net do not use scale

LF-Net and RF-Net both achieve high accuracy in Locale keypoints detection and description. but they are very slow and has some problems.

SE是一個(gè)注意力機(jī)制元咙,就相當(dāng)于給每一個(gè)Feature map一個(gè)權(quán)重。首先通過(guò)一個(gè)Avgpool得到一個(gè)一維的向量巫员,元素個(gè)數(shù)和Feature map數(shù)目一樣庶香。然后兩個(gè)帶ReLU的全連接層,最后加一個(gè)帶h-sigmoid的全連接層简识。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末赶掖,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子七扰,更是在濱河造成了極大的恐慌奢赂,老刑警劉巖,帶你破解...
    沈念sama閱讀 217,509評(píng)論 6 504
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件颈走,死亡現(xiàn)場(chǎng)離奇詭異膳灶,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)立由,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,806評(píng)論 3 394
  • 文/潘曉璐 我一進(jìn)店門(mén)轧钓,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人锐膜,你說(shuō)我怎么就攤上這事毕箍。” “怎么了道盏?”我有些...
    開(kāi)封第一講書(shū)人閱讀 163,875評(píng)論 0 354
  • 文/不壞的土叔 我叫張陵而柑,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我荷逞,道長(zhǎng)媒咳,這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,441評(píng)論 1 293
  • 正文 為了忘掉前任种远,我火速辦了婚禮伟葫,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘院促。我一直安慰自己,他們只是感情好斧抱,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,488評(píng)論 6 392
  • 文/花漫 我一把揭開(kāi)白布常拓。 她就那樣靜靜地躺著,像睡著了一般辉浦。 火紅的嫁衣襯著肌膚如雪弄抬。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 51,365評(píng)論 1 302
  • 那天宪郊,我揣著相機(jī)與錄音掂恕,去河邊找鬼拖陆。 笑死,一個(gè)胖子當(dāng)著我的面吹牛懊亡,可吹牛的內(nèi)容都是我干的依啰。 我是一名探鬼主播,決...
    沈念sama閱讀 40,190評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼店枣,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼速警!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起鸯两,我...
    開(kāi)封第一講書(shū)人閱讀 39,062評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤闷旧,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后钧唐,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體忙灼,經(jīng)...
    沈念sama閱讀 45,500評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,706評(píng)論 3 335
  • 正文 我和宋清朗相戀三年钝侠,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了该园。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 39,834評(píng)論 1 347
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡机错,死狀恐怖爬范,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情弱匪,我是刑警寧澤青瀑,帶...
    沈念sama閱讀 35,559評(píng)論 5 345
  • 正文 年R本政府宣布,位于F島的核電站萧诫,受9級(jí)特大地震影響斥难,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜帘饶,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,167評(píng)論 3 328
  • 文/蒙蒙 一哑诊、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧及刻,春花似錦镀裤、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 31,779評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至颗搂,卻和暖如春担猛,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 32,912評(píng)論 1 269
  • 我被黑心中介騙來(lái)泰國(guó)打工傅联, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留先改,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 47,958評(píng)論 2 370
  • 正文 我出身青樓蒸走,卻偏偏與公主長(zhǎng)得像仇奶,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子载碌,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,779評(píng)論 2 354

推薦閱讀更多精彩內(nèi)容