RM-MEDA:A Regularity Model Based Multiobjective Estimation of Distribution Algorithm

文章地址:RM-MEDA: A Regularity Model Based Multiobjective Estimation of Distribution Algorithm

在溫和的條件下煤惩,可以從Karush-Kuhn-Tucker條件誘導(dǎo)出連續(xù)多目標(biāo)優(yōu)化問題的Pareto集是(m-1)-D區(qū)段連續(xù)范嘱,其中m是目標(biāo)數(shù)迅细。根據(jù)這個規(guī)則屬性,我們提出一種基于規(guī)則模型的分布式算法多目標(biāo)估計(RM-MEDA),用于連續(xù)多目標(biāo)優(yōu)化問題with variable linkages峭范。在每一代中,所提出的算法通過其質(zhì)心為(M-1)-D分段連續(xù)流行的概率分布在決策空間中建模有前景的區(qū)域。采用局部主成分分析算法來建立該模型。從模型中采樣新的試用解奴紧。然后采用非支配排序來選擇解進(jìn)入下一代。

引言

多目標(biāo)優(yōu)化在許多工業(yè)領(lǐng)域備受關(guān)注刁愿。一般绰寞,MOP中的目標(biāo)是相互沖突的到逊,沒有單個解能夠同時優(yōu)化所有目標(biāo)铣口。Pareto集/面是決策/目標(biāo)空間的一組最優(yōu)折中解。當(dāng)決策者的偏好無法獲取或難以在數(shù)學(xué)上表示時觉壶,決策者通常需要近似Pareto集或Pareto面來給予他們最終的選擇脑题。這種近似可以是Pareto最優(yōu)解的有限集合或Pareto集/面的數(shù)學(xué)近似模型。

當(dāng)Schaffer‘s開創(chuàng)性成果發(fā)表后铜靶,發(fā)展了一系列進(jìn)化算法(EA)來求解多目標(biāo)優(yōu)化問題叔遂。多目標(biāo)優(yōu)化算法(MOEA)的主要優(yōu)勢是它們是基于種群的算法,能夠在單次運(yùn)行中提供一組Pareto最優(yōu)解來近似Pareto面/Pareto集争剿。當(dāng)前的MOEA研究主要集中在以下問題已艰。

適應(yīng)度分配和分布性維持:與標(biāo)量優(yōu)化的方法一樣,大多數(shù)MOEAs使用選擇算子將其搜索引導(dǎo)到?jīng)Q策空間中的有前景的區(qū)域蚕苇。當(dāng)Pareto支配不能完成排序時哩掺,單目標(biāo)優(yōu)化中的傳統(tǒng)的選擇算子不能直接應(yīng)用到多目標(biāo)優(yōu)化中。此外涩笤,大多數(shù)MOEAs的任務(wù)是產(chǎn)生一組盡量均勻分布在Pareto面上的解嚼吞。因此,MOEAs的選擇算子不能只考慮種群的收斂性蹬碧。因此舱禽,為每個解分配相對適應(yīng)度值以反映其在MOEAs中的選擇效用是非常重要的工作。適應(yīng)度分配成為了過去20年的主要研究恩沽。一些技術(shù)誊稚,例如適應(yīng)度共享、聚集距離罗心,在適應(yīng)度分配中頻繁使用來保證搜索的分布性里伯。最近,提出了一種基于分解的適應(yīng)度分配和多樣性維持方法协屡。

額外種群:使用當(dāng)個on-line種群很難平衡收斂和分布俏脊。因?yàn)閿?shù)量有限,on-line種群不能存儲在搜索期間找到的一些代表性的解肤晓。為了克服該缺陷爷贫,MOEA采用額外的種群(歸檔集)來記錄搜索過程中找到的非支配解认然。

MOEA和局部搜索的結(jié)合:memetic algorithm結(jié)合EA和啟發(fā)式局部搜索法在各種單目標(biāo)優(yōu)化問題中優(yōu)于傳統(tǒng)的進(jìn)化算法。一些多目標(biāo)memtic algorithms(MOMA)在過去十年里獲得發(fā)展漫萄。MOMA需要考慮如何為局部搜索算子評價解的質(zhì)量卷员。在多目標(biāo)遺傳局部搜索(MOGLS)中,隨機(jī)權(quán)重的標(biāo)量函數(shù)在局部搜索和選擇中用作其評估函數(shù)腾务。Memetic Pareto archived evolution strategy(M-PAES)通過使用支配排序來評價解毕骡。MOEA/D提供了多目標(biāo)優(yōu)化中標(biāo)量優(yōu)化的一般方法。

然而岩瘦,在如何生成新的解集方面還沒有多少工作未巫。當(dāng)前大多數(shù)MOEAs直接采用的是遺傳重組算子,例如:交叉和變異启昧。在生成新解的過程中叙凡,MOPs的特征沒有被很好地利用。最近密末,Deb等比較了幾個重組算子在一些測試問題with variable linkages上的性能握爷。實(shí)驗(yàn)結(jié)果表明,variable linkages導(dǎo)致MOEA的難度增加严里,重組算子對MOEA的性能至關(guān)重要新啼。

據(jù)觀察,在溫和條件下刹碾,連續(xù)MOP的Pareto集(決策空間)是分段連續(xù)(m-1)維流形燥撞,其中m是目標(biāo)的數(shù)量。該觀察已經(jīng)在數(shù)學(xué)規(guī)劃方法中用來近似Pareto面和Pareto集教硫。然而叨吮,這種規(guī)律并沒有應(yīng)用到MOEAs中,除了那些隱含利用規(guī)律性的局部搜索瞬矩,例如動態(tài)加權(quán)聚合方法茶鉴。本文的工作將表明,基于這種規(guī)律性的新試驗(yàn)解的繁殖可以有效地應(yīng)對連續(xù)MOP中的variable linkages景用。

分布性算法的估計(EDA)是進(jìn)化計算中一種新計算模式涵叮。另外,他們明確地從所選擇的解中提取全局統(tǒng)計信息伞插,并基于提取的信息構(gòu)建有前景的解的后驗(yàn)概率分布模型割粮。從構(gòu)建的模型中采用新的解,并全部或部分取代久的種群媚污。幾種EDA方法已經(jīng)提出來求解連續(xù)MOP問題舀瓢。然而,這些EDA在建立概率模型時沒有考慮規(guī)律性耗美。由于規(guī)律性概率建模技術(shù)已經(jīng)在統(tǒng)計學(xué)領(lǐng)域得到了廣泛的研究京髓,因此非常適合利用EDA設(shè)計中的規(guī)律性來實(shí)現(xiàn)連續(xù)MOP航缀。

作為首次在決策空間中捕獲和利用Pareto集的規(guī)律性,我們最近提出使用局部主成分分析來從先前的搜索中歐提取Pareto集的規(guī)律性模式堰怨。我們研究了兩種混合MOEAs芥玉。其中一些試驗(yàn)解由傳統(tǒng)遺傳算子生成,其他的從基于規(guī)律模式構(gòu)建的概率模型中抽樣生成备图。

主要創(chuàng)新:基于連續(xù)MOPs的規(guī)律性屬性灿巧,提出一種分布性算法的估計求解連續(xù)MOPs。該算法沒有采用交叉和變異算子產(chǎn)生新的解揽涮。另外抠藕,本文還建立了更具有統(tǒng)計意義且簡單的模型的參數(shù)估計。

算法

基本思想

EDAs構(gòu)建概率模型绞吁,用于基于從先前搜索中提取的統(tǒng)計信息來表征搜索空間中的有前景的解幢痘,然后從該模型中采樣新的試驗(yàn)解唬格。一個非常重要的問題是應(yīng)該使用什么樣的模型來完成這樣的任務(wù)家破。一個好的模型應(yīng)該易于構(gòu)建和采樣,并且能夠描述具有良好保真度的有前景的區(qū)域购岗。

我們希望決策空間中的種群能夠近似PS汰聋,且隨著搜索的推移均勻地散布在整個PS上。因此喊积,我們可以設(shè)想種群中的點(diǎn)作為以PS為質(zhì)心的隨機(jī)向量\xi \in R^n的獨(dú)立觀測烹困。而PS是一個分段連續(xù)(m-1)維流形,\xi有如下描述:

(2)

其中乾吻,\zeta均勻分布在分段連續(xù)(m-1)維流形上髓梅。\varepsilon為n維均值為0的噪聲向量。

圖1給出了我們的基本思想绎签。

算法框架

在每一代中沒枯饿,算法需要保留大小為N的種群:

算法如下所述:

建模

將模型(2)擬合到種群Pop(t)中的點(diǎn)與主曲線或曲面分析高度相關(guān),旨在找到R^n中一組點(diǎn)的中心曲線或曲面诡必。然而奢方,由于其模型的內(nèi)在復(fù)雜性,用于主曲線或曲面分析的大多數(shù)算法相當(dāng)昂貴爸舒。由于在RM-MEDA每一代中需要進(jìn)行建模蟋字,因此在RM-MEDA中無法承受太過復(fù)雜的模型。另一方面扭勉,當(dāng)種群Pop(t)中的點(diǎn)的實(shí)際分布很難通過公式(2)準(zhǔn)確描述時鹊奖,也沒必要采用復(fù)雜的模型。

為了簡單起見涂炎,在我們實(shí)現(xiàn)中忠聚,假設(shè)\xi的質(zhì)信是由K個流形組成\Psi^1,\cdots , \Psi^K焰盗,(例如,(2)中的\zeta在這些流形上均勻分布咒林。)熬拒,每個\Psi^j是一個(m-1)維超矩形。特別地:

在二目標(biāo)情況下(m=2)垫竞,每個\Psi^jR^n中是一個線段澎粟。

在三目標(biāo)情況下(m=3),每個\Psi^j\Psi^j中是一個矩形欢瞪。

假設(shè)A^j表示\zeta是來自\Psi^j的事件活烙。那么

在事件A^j發(fā)生的條件下,我們做出如下假設(shè):

\zeta是在\Psi^j上均勻生成的遣鼓。

\varepsilon \thicksim N(0,\sigma_jI)啸盏,其中In\times n單位矩陣,\sigma_j > 0骑祟。

在以上假設(shè)的情況下回懦,建模問題視為估計\Psi^j, \sigma_jProb(A^j)(j=1,2,\cdots,K)。為了解決該問題次企,我們首先劃分Pop(t)為K分離簇S^1,\cdots,S^K怯晕,在S^j中的點(diǎn)視為在A^j條件下的樣本。然后缸棵,我們能夠估計參數(shù)舟茶。

在本文中,我們使用(m-1)維局部豬成分分析((m-1)-D Local PCA)算法為劃分的種群Pop(t)堵第。假設(shè)SR^n的有限子集吧凉,S的樣本均值是:

其中|S|S的基數(shù)。S中點(diǎn)的協(xié)方差矩陣為:

第i個主分量U^i是矩陣Cov的第i個最大特征值相關(guān)聯(lián)的單位特征向量踏志。然后將S中各點(diǎn)的仿射(m-1)維主子空間定義為:

通過(m-1)局部PCA算法最小化以下誤差函數(shù)獲得S^1,\cdots , S^K分區(qū)阀捅。

其中\mathcal{L}^{m-1}_jS_j中點(diǎn)的仿射(m-1)維主要j子空間,dis(x,\mathcal{L}^{m-1}_j)是從x到其在\mathcal{L}^{m-1}_j中的投影的歐幾里德距離狰贯。

(m-1)局部PCA通過以下迭代將種群Pop(t)=\{x^1, \cdots, x^N\}分割到S^1,\cdots,S^K

局部PCA算法比K-means聚類方法(聚類質(zhì)心為一點(diǎn))更適合于分割Pop(t)來構(gòu)建模型(2)也搓。因?yàn)槲覀兗僭O(shè)每個質(zhì)心cluster應(yīng)該是一個(m-1)-D超矩形而不是一個點(diǎn)。

大致上涵紊,RM-MEDA的建模工作如下所示:

討論:

繁殖

需要考慮的問題是在每個\Psi^i中生成多少個新的試驗(yàn)解傍妒。在最終解均勻分配在PS的理想情況下,我們假設(shè)

其中摸柄,vol(\Psi^j)\Psi^j的(m-1)-D體積颤练。因此,圍繞\Psi^i生成的新解與vol(\Psi^j)成比例驱负。生成解的過程如下:


選擇

選擇的過程如下:

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末嗦玖,一起剝皮案震驚了整個濱河市患雇,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌宇挫,老刑警劉巖苛吱,帶你破解...
    沈念sama閱讀 216,372評論 6 498
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異器瘪,居然都是意外死亡翠储,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,368評論 3 392
  • 文/潘曉璐 我一進(jìn)店門橡疼,熙熙樓的掌柜王于貴愁眉苦臉地迎上來援所,“玉大人,你說我怎么就攤上這事欣除∽∈茫” “怎么了?”我有些...
    開封第一講書人閱讀 162,415評論 0 353
  • 文/不壞的土叔 我叫張陵历帚,是天一觀的道長滔岳。 經(jīng)常有香客問我,道長抹缕,這世上最難降的妖魔是什么澈蟆? 我笑而不...
    開封第一講書人閱讀 58,157評論 1 292
  • 正文 為了忘掉前任,我火速辦了婚禮卓研,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘睹簇。我一直安慰自己奏赘,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,171評論 6 388
  • 文/花漫 我一把揭開白布太惠。 她就那樣靜靜地躺著磨淌,像睡著了一般。 火紅的嫁衣襯著肌膚如雪凿渊。 梳的紋絲不亂的頭發(fā)上梁只,一...
    開封第一講書人閱讀 51,125評論 1 297
  • 那天,我揣著相機(jī)與錄音埃脏,去河邊找鬼搪锣。 笑死,一個胖子當(dāng)著我的面吹牛彩掐,可吹牛的內(nèi)容都是我干的构舟。 我是一名探鬼主播,決...
    沈念sama閱讀 40,028評論 3 417
  • 文/蒼蘭香墨 我猛地睜開眼堵幽,長吁一口氣:“原來是場噩夢啊……” “哼狗超!你這毒婦竟也來了弹澎?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 38,887評論 0 274
  • 序言:老撾萬榮一對情侶失蹤努咐,失蹤者是張志新(化名)和其女友劉穎苦蒿,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體渗稍,經(jīng)...
    沈念sama閱讀 45,310評論 1 310
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡刽肠,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,533評論 2 332
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了免胃。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片音五。...
    茶點(diǎn)故事閱讀 39,690評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖羔沙,靈堂內(nèi)的尸體忽然破棺而出躺涝,到底是詐尸還是另有隱情,我是刑警寧澤扼雏,帶...
    沈念sama閱讀 35,411評論 5 343
  • 正文 年R本政府宣布坚嗜,位于F島的核電站,受9級特大地震影響诗充,放射性物質(zhì)發(fā)生泄漏苍蔬。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,004評論 3 325
  • 文/蒙蒙 一蝴蜓、第九天 我趴在偏房一處隱蔽的房頂上張望碟绑。 院中可真熱鬧,春花似錦茎匠、人聲如沸格仲。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,659評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽凯肋。三九已至,卻和暖如春汽馋,著一層夾襖步出監(jiān)牢的瞬間侮东,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 32,812評論 1 268
  • 我被黑心中介騙來泰國打工豹芯, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留悄雅,地道東北人。 一個月前我還...
    沈念sama閱讀 47,693評論 2 368
  • 正文 我出身青樓告组,卻偏偏與公主長得像煤伟,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,577評論 2 353

推薦閱讀更多精彩內(nèi)容