Given an index k, return the kth row of the Pascal's triangle.
For example, given k = 3,
Return [1,3,3,1].
Note:
Could you optimize your algorithm to use only O(k) extra space?
題意:118題的followup,要求只返回第k層跪楞,k是從0開始容握。空間復(fù)雜度是否只用O(K)就可以。
思路:按照118的思路,不斷的更新上一層pre的信息,最后可以推導(dǎo)出第k層港准。
public List<Integer> getRow(int rowIndex) {
List<Integer> res = new ArrayList<>();
if (rowIndex < 0) {
return res;
}
res.add(1);
List<Integer> pre = res;
for (int i = 1; i <= rowIndex; i++) {
res = new ArrayList<>();
for (int j = 0; j <= i; j++) {
if (j == 0 || j == i) {
res.add(1);
} else {
res.add(pre.get(j - 1) + pre.get(j));
}
}
pre = res;
}
return res;
}
但是根據(jù)每個上層來推導(dǎo)下層,空間復(fù)雜度將無法滿足O(K)的要求咧欣,查看discuss答案浅缸,發(fā)現(xiàn)它的思路是從后往前不斷的拓寬當(dāng)前層。
public List<Integer> getRow(int rowIndex) {
List<Integer> list = new ArrayList<Integer>();
if (rowIndex < 0)
return list;
for (int i = 0; i < rowIndex + 1; i++) {
list.add(0, 1);
for (int j = 1; j < list.size() - 1; j++) {
list.set(j, list.get(j) + list.get(j + 1));
}
}
return list;
}