Bonferroni Method

Bonferroni Method

Background:

We know ANOVA is good for testing if there is any difference between the mean value among different groups.

Null Hypothesis: x0=x1=x2....
If the p-value for ANOVA <0.05, we know there is at least one group have different mean values compared to others.However, we do not know which groups have significant mean values. If we would like to know which paired groups have significant differences between the mean values, we will use the Bonferroni Method.

Bonferroni's Method:

It is a stronger version of ANOVA; it is used for multiple hypothesis testing to find out the mean value of which pair treatments are significantly different from each other.
Null Hypothesis: x1=x2, x2=x3, .... ,xn=x1

Bonferroni Confidence Intervals and P-value:

Since there are multiple groups, if we conduct the Confidence level 1-α individually, therefore, we need to make adjusts according to the number of treatment groups so we can achieve a 1-α overall Confidence interval by using the significance level of α/m. If the Bonferroni confidence interval contains 0 then it means the mean value of these group not significant, otherwise, the mean value of the two groups are significant. For Example, If we want to achieve a 95% CI of 2 treatment groups, A and B, compare with Placebo individually, then we need to set the individual group to be 97.5% CI.

Similarly, for a P-value to be statistically significant, we need to consider the number of groups. In the previous example, we need P-value < 0.025 to demonstrate the mean value is different between Treatment A/B and Placebo.

Note: If there are k groups, then there are k(k-1)/2 pairwise differences to consider.

Example:

Suppose we have 4 Treatment Group and Pain Score Value, we want to know which groups have significant mean values.

Solution:

proc anova data=one ;
class treatment;
model value=treatment ;
means treatment / alpha=0.0125 bon cldiff;
run;
image
title "Mean Value by Treatment";
proc sgplot data=two;
vbar treatment/response=mean
barwidth=0.6;
run;
image

Outcome:

From the ANOVA result, we can see Treatment 1-2, Treatment 2-4 and Treatment 1-3 have the significant difference in mean value. Our plot visually supported the result as well.

Summary:

ANOVA method will tell us if there's the difference between the mean value for each group, and Bonferroni's method investigates one more step to check which pair of mean values is significantly different from each other. We can use the Confidence Interval and P-value to determine the result, When m is too large, too many treatment groups, then Bonferroni is not recommended.

Alternative Method for Clinical Trial Studies, Dunnett Method, it is the best method for treatment VS comparison.

Thanks very much to Renee Wu.5 for sharing and go through the Bonferroni Method with me!

Happy Studying! ??

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市言缤,隨后出現(xiàn)的幾起案子判哥,更是在濱河造成了極大的恐慌,老刑警劉巖褒侧,帶你破解...
    沈念sama閱讀 219,490評論 6 508
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件良风,死亡現(xiàn)場離奇詭異,居然都是意外死亡闷供,警方通過查閱死者的電腦和手機烟央,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,581評論 3 395
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來歪脏,“玉大人疑俭,你說我怎么就攤上這事⌒鍪В” “怎么了钞艇?”我有些...
    開封第一講書人閱讀 165,830評論 0 356
  • 文/不壞的土叔 我叫張陵,是天一觀的道長豪硅。 經(jīng)常有香客問我哩照,道長,這世上最難降的妖魔是什么懒浮? 我笑而不...
    開封第一講書人閱讀 58,957評論 1 295
  • 正文 為了忘掉前任飘弧,我火速辦了婚禮,結(jié)果婚禮上砚著,老公的妹妹穿的比我還像新娘次伶。我一直安慰自己,他們只是感情好稽穆,可當我...
    茶點故事閱讀 67,974評論 6 393
  • 文/花漫 我一把揭開白布冠王。 她就那樣靜靜地躺著,像睡著了一般舌镶。 火紅的嫁衣襯著肌膚如雪柱彻。 梳的紋絲不亂的頭發(fā)上豪娜,一...
    開封第一講書人閱讀 51,754評論 1 307
  • 那天,我揣著相機與錄音绒疗,去河邊找鬼侵歇。 笑死,一個胖子當著我的面吹牛吓蘑,可吹牛的內(nèi)容都是我干的惕虑。 我是一名探鬼主播,決...
    沈念sama閱讀 40,464評論 3 420
  • 文/蒼蘭香墨 我猛地睜開眼磨镶,長吁一口氣:“原來是場噩夢啊……” “哼溃蔫!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起琳猫,我...
    開封第一講書人閱讀 39,357評論 0 276
  • 序言:老撾萬榮一對情侶失蹤伟叛,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后脐嫂,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體统刮,經(jīng)...
    沈念sama閱讀 45,847評論 1 317
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 37,995評論 3 338
  • 正文 我和宋清朗相戀三年账千,在試婚紗的時候發(fā)現(xiàn)自己被綠了侥蒙。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 40,137評論 1 351
  • 序言:一個原本活蹦亂跳的男人離奇死亡匀奏,死狀恐怖鞭衩,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情娃善,我是刑警寧澤论衍,帶...
    沈念sama閱讀 35,819評論 5 346
  • 正文 年R本政府宣布,位于F島的核電站聚磺,受9級特大地震影響坯台,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜瘫寝,卻給世界環(huán)境...
    茶點故事閱讀 41,482評論 3 331
  • 文/蒙蒙 一蜒蕾、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧矢沿,春花似錦滥搭、人聲如沸酸纲。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,023評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽闽坡。三九已至栽惶,卻和暖如春愁溜,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背外厂。 一陣腳步聲響...
    開封第一講書人閱讀 33,149評論 1 272
  • 我被黑心中介騙來泰國打工冕象, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留,地道東北人汁蝶。 一個月前我還...
    沈念sama閱讀 48,409評論 3 373
  • 正文 我出身青樓渐扮,卻偏偏與公主長得像,于是被迫代替她去往敵國和親掖棉。 傳聞我的和親對象是個殘疾皇子墓律,可洞房花燭夜當晚...
    茶點故事閱讀 45,086評論 2 355

推薦閱讀更多精彩內(nèi)容