Combination Sum(39,40,216)
Given a set of candidate numbers (C) (without duplicates) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7]
and target 7
,
A solution set is:
[
[7],
[2, 2, 3]
]
Subscribe to see which companies asked this question.
public class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(candidates);
backtrack(list, new ArrayList<>(), candidates, target, 0);
return list;
}
private void backtrack(List<List<Integer>> list,List<Integer> tmpList,int[] nums, int remain, int start ){
if(remain < 0) return;
else if(remain == 0) list.add(new ArrayList<>(tmpList));
else{
for(int i=start;i<nums.length;i++){
tmpList.add(nums[i]);
backtrack(list, tmpList, nums, remain-nums[i], i);// not i + 1 because we can reuse same elements
tmpList.remove(tmpList.size()-1);
}
}
}
}
Given a collection of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
Each number in C may only be used once in the combination.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
For example, given candidate set [10, 1, 2, 7, 6, 1, 5]
and target 8
,
A solution set is:
[
[1, 7],
[1, 2, 5],
[2, 6],
[1, 1, 6]
]
Subscribe to see which companies asked this question.
public class Solution {
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> list = new ArrayList<>();
Arrays.sort(candidates);
backtrack(list, new ArrayList<>(), candidates, target, 0);
return list;
}
private void backtrack(List<List<Integer>> list, List<Integer> tempList, int [] nums, int remain, int start){
if(remain < 0) return;
else if(remain == 0) list.add(new ArrayList<>(tempList));
else{
for(int i = start; i < nums.length; i++){
if(i > start && nums[i] == nums[i-1]) continue; // skip duplicates
tempList.add(nums[i]);
backtrack(list, tempList, nums, remain - nums[i], i + 1);
tempList.remove(tempList.size() - 1);
}
}
}
}
Find all possible combinations of *k* numbers that add up to a number *n*, given that only numbers from 1 to 9 can be used and each combination should be a unique set of numbers.
*Example 1:*
Input: *k* = 3, *n* = 7
Output:
[[1,2,4]]
*Example 2:*
Input: *k* = 3, *n* = 9
Output:
[[1,2,6], [1,3,5], [2,3,4]]
Credits:
Special thanks to @mithmatt for adding this problem and creating all test cases.
Subscribe to see which companies asked this question.
Show Tags
Show Similar Problems
public class Solution {
public List<List<Integer>> combinationSum3(int k, int n) {
List<List<Integer>> list = new ArrayList<>();
//Arrays.sort(); arrays=[1,2,3,4,5,6,7,8,9]
backtrack(list,new ArrayList<Integer>(),k,1,n);
return list;
}
private void backtrack(List<List<Integer>> list,List<Integer> tmpList,int k,int start,int n){
if(tmpList.size()==k &&n==0){
List<Integer> li = new ArrayList<Integer>(tmpList);
list.add(li);
return;
}
for(int i=start;i<=9;i++){
tmpList.add(i);
backtrack(list,tmpList,k,i+1,n-i);
tmpList.remove(tmpList.size()-1);
}
}
}