說之前先提一個視頻這個視頻還是很好的將transformer
機(jī)制的變遷及未來的趨勢很詳細(xì)的說明了一下我覺得蠻有感觸的,建議可以看看這里首先提一下代碼及其對應(yīng)的論文視頻地址蚌卤。
paper:Swin Transformer: Hierarchical Vision Transformer using Shifted Windows
code: microsoft/Swin-Transformer
可以理解SwinTransformer是新一代的特征提取神器奶镶,很多榜單都有它的影子羹奉,這里我們可以理解為是一種新的`backbone鲫尊,如下所示支持多種下游任務(wù)笔横。相對比之前說的Transformer 在圖像中的運(yùn)用(一)VIT(Transformers for Image Recognition at Scale)論文及代碼解讀 之前需要每個像素
一竞滓、 原理
在Transformer種,如果圖像像素太多則我們需要構(gòu)建出更多的特征序列吹缔,這樣就會導(dǎo)致我們的效率降低商佑,所以我們采用了窗口
以及分層
的形式來替代長序列。
1.1 整體網(wǎng)絡(luò)架構(gòu)
- 得到各
Patch
特征構(gòu)建的序列(注意這里先卷積得到特征圖厢塘,再對特征圖進(jìn)行切分成Patch
) - 分成計算
attention
(逐步下采樣過程) - 其中Block是最核心的茶没, 對attention的計算方法進(jìn)行了改進(jìn)
由下面的圖我們可以看出特征圖大小不斷減小, 但是特征圖的通道數(shù)不斷增加晚碾。
1.1.1 Patch Embedding
下面舉一個例子比如輸入的圖像數(shù)據(jù)為(224, 224, 3)
抓半, 輸出(3136, 96)
相當(dāng)于序列長度為3136
, 每個向量是96維
特征格嘁。這里的卷積核我們使用Conv2d(3, 96, kernel_size=(4, 4), stride=(4, 4))
笛求。所以3136
就是卷積(224 / 4) * (224 / 4)
得到的。
這時候我們得到的輸入特征圖為(56, 56, 96)
糕簿, 如果默認(rèn)窗口大小為7涣易,所以總共可以分為8 * 8
個窗口。則輸出的特征圖為(64(8*8), 7, 7, 96)
之前單位是序列
冶伞, 現(xiàn)在單位是窗口(工64個窗口)
新症。
1.1.2 Swin Transformer Block
下面我們來看下上面圖中對應(yīng)的Transformer Blocks
是什么樣子, 如下圖所示响禽。
上圖的兩個組合是串聯(lián)而成的Block徒爹,對于左邊為基于窗口的注意力計算
W-MSA(multi-head self attention modules with regular)
,對于右邊為窗口滑動后重新計算注意力SW-MSA(multi-head self attention modules with shifted windowing)
1. W-MSA(計算每個不同窗口自身
的注意力機(jī)制(下面不同顏色的矩形代表不同的窗口))
對得到的窗口芋类,計算各個窗口自己的自注意力得分隆嗅,
qkv
三個矩陣放在一起得到(3, 64, 3, 49, 32)
。
-
3
個矩陣 -
64
個窗口 -
3
個heads -
7*7
的窗口大小(每個窗口有49個token即49個像素) -
96/3=32
個單head特征
所以attention
結(jié)果為(64, 3, 49, 49)
每個頭都會得出每個窗口內(nèi)的自注意力(3為頭侯繁,這里可以理解為不同窗口不同頭對應(yīng)窗口的不同token之間的注意力)胖喳。
通過上面的計算我們可以得到新的特征(64, 49, 96)
, 之后再進(jìn)行reshape
操作將其還原到(56, 56, 96)
大小特征圖目的就是為了還原輸入特征圖大小(但是其已經(jīng)計算過了attentation
), 因為再transformer要經(jīng)過多層輸入大小與輸出大小一般都是相同的。
下面給出了省出來的計算量。
這里計算量公式可以參考這篇文章Swin-Transformer網(wǎng)絡(luò)結(jié)構(gòu)詳解啊送。
2. SW-MSA(計算不同窗口之間
的注意力機(jī)制)
上面W-MSA
是只是知道窗口內(nèi)部的特征,但是我們不知道窗口之間的特征我們可以用SW-MSA
機(jī)制來彌補(bǔ)欣孤。這里的主要區(qū)別就是S(shift滑動)
馋没,我們?nèi)绾稳プ龌瑒幽?
上圖中我們可以看出網(wǎng)格由紅色網(wǎng)格(b)移動到了藍(lán)色網(wǎng)格(c),我們需要通過將上方藍(lán)色區(qū)域移動到下方降传,左邊紅色區(qū)域移動到右邊披泪。這么做的目的如下:
記住這里是半個窗口, 還有一點(diǎn)記住是向下取整(如窗口大小3, 則移動為1)
說白了就是換一換所有不同窗口的匹配對搬瑰,使得模型更加健壯款票,這就是滑動操作。
由于不同Windows之間互不重疊泽论,每次進(jìn)行自注意力計算時很顯然就丟失了Windows之間的信息艾少,那么如何在降低計算量的同時保留全局信息呢?Shifted Window應(yīng)運(yùn)而生翼悴。
上面這張圖可以用如下的示意圖理解:
但是還有一個問題原來是4個windows缚够,但是移動之后變成了9個windows,為了能夠做到并行計算應(yīng)該如何解決呢鹦赎?我們可以做如下偏移方法谍椅。
則得到如下效果:
Attention Mask 機(jī)制
因為我們區(qū)域(5,3) (7,1) (8,6,2,0)本來是之間不想連接的,所以我們要單獨(dú)計算各自的區(qū)域的MSA古话。我們借用區(qū)域(5,3)舉例雏吭,這篇博客對于這個解釋非常棒Swin-Transformer網(wǎng)絡(luò)結(jié)構(gòu)詳解, 如下所示:
這里我們僅僅計算
區(qū)域5
的信息而不想引入區(qū)域3
的信息陪踩,我們通過掩碼mask
的方式即可計算杖们。因為本來公式中100
, 再經(jīng)過softmax
可以理解為就是為0了。注意肩狂,全部計算完后需要將數(shù)據(jù)挪回到原來的位置上摘完。下面演示一下整體流程
因為要經(jīng)過多層transformer通過W-MSA以及SW-MSA輸出的大小保持不變(56*56*96)
1.1.2 Relative Position Bias
下面我們看下加相對偏置與不加相對偏置的效果
發(fā)現(xiàn)使用
rel.pos
相對位置偏置更加合理。如何將一元坐標(biāo)轉(zhuǎn)成二元坐標(biāo)呢傻谁?我們看作者如何去做的孝治。
1.1.3 PatchMerging
這里我們就要說到這里
Patch Merging
操作。它的作用可以縮小特征圖大小谈飒,提升特征圖的通道數(shù)(這里也可以理解為就是下采樣操作)岂座。二、 代碼邏輯解讀
# file: models/swin_transformer.py
# class: SwinTransformer
class SwinTransformer(nn.Module):
r""" Swin Transformer
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
img_size (int | tuple(int)): Input image size. Default 224
patch_size (int | tuple(int)): Patch size. Default: 4
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
embed_dim (int): Patch embedding dimension. Default: 96
depths (tuple(int)): Depth of each Swin Transformer layer.
num_heads (tuple(int)): Number of attention heads in different layers.
window_size (int): Window size. Default: 7
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
drop_rate (float): Dropout rate. Default: 0
attn_drop_rate (float): Attention dropout rate. Default: 0
drop_path_rate (float): Stochastic depth rate. Default: 0.1
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
patch_norm (bool): If True, add normalization after patch embedding. Default: True
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
"""
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1000,
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24],
window_size=7, mlp_ratio=4., qkv_bias=True, qk_scale=None,
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
norm_layer=nn.LayerNorm, ape=False, patch_norm=True,
use_checkpoint=False, **kwargs):
super().__init__()
self.num_classes = num_classes
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.num_features = int(embed_dim * 2 ** (self.num_layers - 1))
self.mlp_ratio = mlp_ratio
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
num_patches = self.patch_embed.num_patches
patches_resolution = self.patch_embed.patches_resolution
self.patches_resolution = patches_resolution
# absolute position embedding
if self.ape:
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, embed_dim))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
# 這里的drop rate是會隨著模型不同stage不斷提升到我們設(shè)定的rate
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer), # 我們的深度不斷乘上2
input_resolution=(patches_resolution[0] // (2 ** i_layer),
patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None, # 這里transoformer和patchMerge是連在一起的最后一個沒有transformer只有patchMerge
use_checkpoint=use_checkpoint)
self.layers.append(layer)
self.norm = norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
self.apply(self._init_weights)
2.1 input embedding
# file: models/swin_transformer.py
# class: SwinTransformer
def forward_features(self, x):
x = self.patch_embed(x)
if self.ape:
x = x + self.absolute_pos_embed
x = self.pos_drop(x)
for layer in self.layers:
x = layer(x)
x = self.norm(x) # B L C
x = self.avgpool(x.transpose(1, 2)) # B C 1
x = torch.flatten(x, 1)
return x
這里我們的輸入大小為4(batch), 3(channel), 224(width), 224(height)
步绸, 接著進(jìn)入到self.patch_embed
操作掺逼。
# file: swin_transformer.py
# class: PatchEmbed
def forward(self, x):
B, C, H, W = x.shape
# FIXME look at relaxing size constraints
assert H == self.img_size[0] and W == self.img_size[1], \
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
x = self.proj(x).flatten(2).transpose(1, 2) # B Ph*Pw C
if self.norm is not None:
x = self.norm(x)
return x
和以往vit
一樣吃媒,這里做self.proj
就是進(jìn)行卷積操作
# 卷積核大小為4瓤介, stride也是為4, 這樣會導(dǎo)致輸出特征圖為原來的額1/4 -> (56 * 56)
# 輸入輸出channel分別為3和96
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size
# 這部分flatten操作是將我們的寬度高度展平赘那,輸出shape為(4, 3136(56*56), 96)
x = self.proj(x).flatten(2).transpose(1, 2)
在經(jīng)過self.norm
對應(yīng)的操作為nn.LayerNorm
刑桑。
接著我們會經(jīng)過我們的self.pos_drop(x)
, 這里的self.pos_drop
為nn.Dropout(p=drop_rate)
操作募舟。
接著進(jìn)行下面各個層的操作(別忘記此時我們的輸入shape為
(4, 3136(56*56), 96))
for layer in self.layers:
x = layer(x)
2.2 Basiclayer
接著上面我們看一下self.layers
是如何構(gòu)建的
# file: models/swin_transformer.py
# class: SwinTransformer
for i_layer in range(self.num_layers):
layer = BasicLayer(dim=int(embed_dim * 2 ** i_layer),
input_resolution=(patches_resolution[0] // (2 ** i_layer),
patches_resolution[1] // (2 ** i_layer)),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=self.mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint)
self.layers.append(layer)
# file: models/swin_transformer.py
# class: BasicLayer
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resolution.
depth (int): Number of blocks.
num_heads (int): Number of attention heads.
window_size (int): Local window size.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
num_heads=num_heads, window_size=window_size,
shift_size=0 if (i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop, attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
norm_layer=norm_layer)
for i in range(depth)])
# patch merging layer
if downsample is not None:
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x):
for blk in self.blocks:
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
if self.downsample is not None:
x = self.downsample(x)
return x
2.2 SwinTransformerBlock
# file: models/swin_transformer.py
# class: SwinTransformerBlock
class SwinTransformerBlock(nn.Module):
r""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
def forward(self, x):
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
else:
shifted_x = x
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
x = x.view(B, H * W, C)
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
2.2.1 W-MSA及SW-MSA輸入
我們知道輸入是先經(jīng)過W-MSA
再經(jīng)過SW-MSA
經(jīng)過W-MSA
是沒有做任何處理的即代碼中shifted_x = x
祠斧, 但是對于W-MSA
是通過torch.roll
的操作進(jìn)行的,代碼如下所示:
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
這里有1和2拱礁,分別表示要左右上下移動琢锋,還有就是這里的self.shift_size為負(fù)數(shù),說明移動完處理之后這里還是要復(fù)原的
如下代碼所示:
# merge windows
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C # 第一個block得到(4呢灶, 56吴超, 56, 96)
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
else:
x = shifted_x
x = x.view(B, H * W, C)
最終得到的shape依然是我們原來的輸入(4, 3136, 96)
接著下進(jìn)入如下操作
# partition windows
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
比如一開始第一個block
我們的得到的第一個輸出shape為(256, 7, 7, 96)
然后我們得到第二個windows為(256, 49, 96)
鸯乃。相當(dāng)于256
個windows
鲸阻, 每個windows
由49
個像素
, 每個像素
由96
個維度缨睡。
對于上面代碼中的window_partition
代碼如下:
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
return windows
這里的x
shape為(4, 8, 7, 8, 7, 96)
鸟悴, 我們可以得到windows的數(shù)量為
(H/windows_size) * (W/windows_size) * batch
, 這里W
,H
一開始都為56
, windows_size
為7
, 這里設(shè)置的batch
為4
, 因此這里我們最終得到的windows
shape為(256 7 7 96)
。
2.2.2 Attention機(jī)制
上面的輸出之后我們要經(jīng)過我們的Attention
機(jī)制奖年。
attn_windows = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
如果x_windows
是W-MSA
則self.atten_mask
為None
细诸, 否則會加入atten_mask
, 具體代碼如下(詳細(xì)理解可以參考bilibili, 在31分鐘左右 說的非常好):
if self.shift_size > 0:
# calculate attention mask for SW-MSA
H, W = self.input_resolution
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size, -self.shift_size),
slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
對應(yīng)上述代碼簡單點(diǎn)就是再不需要做內(nèi)積的地方填入-100
, 這樣經(jīng)過softmax
的時候就被自動設(shè)置為0
了。
下面先給出我們進(jìn)入attention
的代碼陋守。
class WindowAttention(nn.Module):
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
def extra_repr(self) -> str:
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# qkv = self.qkv(x)
flops += N * self.dim * 3 * self.dim
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
可以看出首先會經(jīng)過self.qkv
生成我們的q, k, v
矩陣揍堰,內(nèi)部代碼就是很簡單的nn.Linear
,
# 這里的`dim`, 我們設(shè)置為96
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
# 這里我們得到的self.qkv shape 為[3, 256, 3, 49, 32] 這里的3分別對應(yīng)qkv,
# 256個窗口分別做attention嗅义,
# 剛開始head為3屏歹,
# 每個窗口有49個元素,
# 32 代表每個頭有32個維度
# q, k, v shape分別為[256, 3, 49, 32]
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
接著用得到我們的注意力機(jī)制之碗,如下所示蝙眶,這里的
self.scale
可以理解為我們的v
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
最終讓我們attention
與position bias
相加, 如下所示獲得我們最終的atten
。
attn = attn + relative_position_bias.unsqueeze(0)
這里的position bias
下面解釋幽纷。
2.2.3 Relative Position Bias Table
我們上面說了相對位置偏置矩陣的大小為(2M-1) * (2M-1)
, 這里的M
為windows-size
大惺剿(詳細(xì)理解可以參考bilibili, 在56分鐘左右 說的非常好)。
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
下面就是之前說的經(jīng)softmax
友浸, 如果mask
不相同索引的我們設(shè)置為-100
, 經(jīng)過softmax
計算就變成了0.
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
在經(jīng)過
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
操作之后我們得到的attention之后的向量為(256, 49. 96)
峰尝, self.proj_drop為drop_out
。
2.2.4 FFN(殘差操作)
最后要做一次殘差連接
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
上述說完就完成了我們SwinTransformerBlock
的部分了收恢。
3. Patch Merging
通過結(jié)構(gòu)圖我們可以看出經(jīng)過
Swin Transformer Block
之后會經(jīng)過Patch Merging
層武学,原理如下圖所示。對應(yīng)的代碼如下:
class PatchMerging(nn.Module):
r""" Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
4. 輸出層
self.norm = norm_layer(self.num_features)
self.avgpool = nn.AdaptiveAvgPool1d(1)
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
x = self.norm(x) # B L C
x = self.avgpool(x.transpose(1, 2)) # B C 1
x = torch.flatten(x, 1)
經(jīng)過平均池化將原來shape由(4, 49, 768)
轉(zhuǎn)成(4, 768, 1)
后面再接一下全連接層
nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
即可伦意。
參考:
[1] Swin Transformer
[2] 如何看待swin transformer成為ICCV2021的 best paper火窒?
[3] Swin-Transformer網(wǎng)絡(luò)結(jié)構(gòu)詳解