976 Largest Perimeter Triangle 三角形的最大周長
Description:
Given an array A of positive lengths, return the largest perimeter of a triangle with non-zero area, formed from 3 of these lengths.
If it is impossible to form any triangle of non-zero area, return 0.
Example:
Example 1:
Input: [2,1,2]
Output: 5
Example 2:
Input: [1,2,1]
Output: 0
Example 3:
Input: [3,2,3,4]
Output: 10
Example 4:
Input: [3,6,2,3]
Output: 8
Note:
3 <= A.length <= 10000
1 <= A[i] <= 10^6
題目描述:
給定由一些正數(shù)(代表長度)組成的數(shù)組 A押蚤,返回由其中三個(gè)長度組成的鲫惶、面積不為零的三角形的最大周長。
如果不能形成任何面積不為零的三角形揍障,返回 0。
示例 :
示例 1:
輸入:[2,1,2]
輸出:5
示例 2:
輸入:[1,2,1]
輸出:0
示例 3:
輸入:[3,2,3,4]
輸出:10
示例 4:
輸入:[3,6,2,3]
輸出:8
提示:
3 <= A.length <= 10000
1 <= A[i] <= 10^6
思路:
先排序, 然后從最大值開始, 遍歷到最大邊小于另外兩邊之和, 這個(gè)三角形即為最大周長的三角形
時(shí)間復(fù)雜度O(nlgn), 空間復(fù)雜度O(1)
代碼:
C++:
class Solution
{
public:
int largestPerimeter(vector<int>& A)
{
sort(A.begin(), A.end());
for (int i = A.size() - 1; i >= 2; i--) if (A[i - 2] + A[i - 1] > A[i]) return A[i - 2] + A[i - 1] + A[i];
return 0;
}
};
Java:
class Solution {
public int largestPerimeter(int[] A) {
Arrays.sort(A);
for (int i = A.length - 1; i >= 2; i--) if (A[i - 2] + A[i - 1] > A[i]) return A[i - 2] + A[i - 1] + A[i];
return 0;
}
}
Python:
class Solution:
def largestPerimeter(self, A: List[int]) -> int:
A.sort(reverse=True)
for i in range(2, len(A)):
if A[i] + A[i - 1] > A[i - 2]:
return A[i - 2] + A[i - 1] + A[i]
return 0