TOTP
參考標準
源碼
// This CODE from RFC4226
import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import java.lang.reflect.UndeclaredThrowableException;
import java.math.BigInteger;
import java.security.GeneralSecurityException;
public class TOTP {
private TOTP() {}
/**
* This method uses the JCE to provide the crypto algorithm.
* HMAC computes a Hashed Message Authentication Code with the
* crypto hash algorithm as a parameter.
*
* @param crypto: the crypto algorithm (HmacSHA1, HmacSHA256,
* HmacSHA512)
* @param keyBytes: the bytes to use for the HMAC key
* @param text: the message or text to be authenticated
*/
private static byte[] hmac_sha(String crypto, byte[] keyBytes,
byte[] text){
try {
Mac hmac;
hmac = Mac.getInstance(crypto);
SecretKeySpec macKey =
new SecretKeySpec(keyBytes, "RAW");
hmac.init(macKey);
return hmac.doFinal(text);
} catch (GeneralSecurityException gse) {
throw new UndeclaredThrowableException(gse);
}
}
/**
* This method converts a HEX string to Byte[]
*
* @param hex: the HEX string
*
* @return: a byte array
*/
private static byte[] hexStr2Bytes(String hex){
// Adding one byte to get the right conversion
// Values starting with "0" can be converted
byte[] bArray = new BigInteger("10" + hex,16).toByteArray();
// Copy all the REAL bytes, not the "first"
byte[] ret = new byte[bArray.length - 1];
for (int i = 0; i < ret.length; i++)
ret[i] = bArray[i+1];
return ret;
}
private static final int[] DIGITS_POWER
// 0 1 2 3 4 5 6 7 8
= {1,10,100,1000,10000,100000,1000000,10000000,100000000 };
/**
* This method generates a TOTP value for the given
* set of parameters.
*
* @param key: the shared secret, HEX encoded
* @param time: a value that reflects a time
* @param returnDigits: number of digits to return
*
* @return: a numeric String in base 10 that includes
* {@link truncationDigits} digits
*/
public static String generateTOTP(String key,
String time,
String returnDigits){
return generateTOTP(key, time, returnDigits, "HmacSHA1");
}
/**
* This method generates a TOTP value for the given
* set of parameters.
*
* @param key: the shared secret, HEX encoded
* @param time: a value that reflects a time
* @param returnDigits: number of digits to return
*
* @return: a numeric String in base 10 that includes
* {@link truncationDigits} digits
*/
public static String generateTOTP256(String key,
String time,
String returnDigits){
return generateTOTP(key, time, returnDigits, "HmacSHA256");
}
/**
* This method generates a TOTP value for the given
* set of parameters.
*
* @param key: the shared secret, HEX encoded
* @param time: a value that reflects a time
* @param returnDigits: number of digits to return
*
* @return: a numeric String in base 10 that includes
* {@link truncationDigits} digits
*/
public static String generateTOTP512(String key,
String time,
String returnDigits){
return generateTOTP(key, time, returnDigits, "HmacSHA512");
}
/**
* This method generates a TOTP value for the given
* set of parameters.
*
* @param key: the shared secret, HEX encoded
* @param time: a value that reflects a time
* @param returnDigits: number of digits to return
* @param crypto: the crypto function to use
*
* @return: a numeric String in base 10 that includes
* {@link truncationDigits} digits
*/
public static String generateTOTP(String key,
String time,
String returnDigits,
String crypto){
int codeDigits = Integer.decode(returnDigits).intValue();
String result = null;
// Using the counter
// First 8 bytes are for the movingFactor
// Compliant with base RFC 4226 (HOTP)
while (time.length() < 16 )
time = "0" + time;
// Get the HEX in a Byte[]
byte[] msg = hexStr2Bytes(time);
byte[] k = hexStr2Bytes(key);
byte[] hash = hmac_sha(crypto, k, msg);
// put selected bytes into result int
int offset = hash[hash.length - 1] & 0xf;
int binary =
((hash[offset] & 0x7f) << 24) |
((hash[offset + 1] & 0xff) << 16) |
((hash[offset + 2] & 0xff) << 8) |
(hash[offset + 3] & 0xff);
int otp = binary % DIGITS_POWER[codeDigits];
result = Integer.toString(otp);
while (result.length() < codeDigits) {
result = "0" + result;
}
return result;
}
}
// This CODE from RFC6238
import javax.crypto.Mac;
import javax.crypto.spec.SecretKeySpec;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
public class OneTimePasswordAlgorithm {
private OneTimePasswordAlgorithm() {
}
// These are used to calculate the check-sum digits.
// 0 1 2 3 4 5 6 7 8 9
private static final int[] doubleDigits =
{0, 2, 4, 6, 8, 1, 3, 5, 7, 9};
/**
* Calculates the checksum using the credit card algorithm.
* This algorithm has the advantage that it detects any single
* mistyped digit and any single transposition of
* adjacent digits.
*
* @param num the number to calculate the checksum for
* @param digits number of significant places in the number
* @return the checksum of num
*/
public static int calcChecksum(long num, int digits) {
boolean doubleDigit = true;
int total = 0;
while (0 < digits--) {
int digit = (int) (num % 10);
num /= 10;
if (doubleDigit) {
digit = doubleDigits[digit];
}
total += digit;
doubleDigit = !doubleDigit;
}
int result = total % 10;
if (result > 0) {
result = 10 - result;
}
return result;
}
/**
* This method uses the JCE to provide the HMAC-SHA-1
* * algorithm.
* HMAC computes a Hashed Message Authentication Code and
* in this case SHA1 is the hash algorithm used.
*
* @param keyBytes the bytes to use for the HMAC-SHA-1 key
* @param text the message or text to be authenticated.
* @throws NoSuchAlgorithmException if no provider makes
* either HmacSHA1 or HMAC-SHA-1
* digest algorithms available.
* @throws InvalidKeyException The secret provided was not a valid HMAC-SHA-1 key.
*/
public static byte[] hmac_sha1(byte[] keyBytes, byte[] text)
throws NoSuchAlgorithmException, InvalidKeyException {
// try {
Mac hmacSha1;
try {
hmacSha1 = Mac.getInstance("HmacSHA1");
} catch (NoSuchAlgorithmException nsae) {
hmacSha1 = Mac.getInstance("HMAC-SHA-1");
}
SecretKeySpec macKey =
new SecretKeySpec(keyBytes, "RAW");
hmacSha1.init(macKey);
return hmacSha1.doFinal(text);
// } catch (GeneralSecurityException gse) {
// throw new UndeclaredThrowableException(gse);
// }
}
private static final int[] DIGITS_POWER
// 0 1 2 3 4 5 6 7 8
= {1, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000};
/**
* This method generates an OTP value for the given
* set of parameters.
*
* @param secret the shared secret
* @param movingFactor the counter, time, or other value that
* changes on a per use basis.
* @param codeDigits the number of digits in the OTP, not
* including the checksum, if any.
* @param addChecksum a flag that indicates if a checksum digit
* * should be appended to the OTP.
* @param truncationOffset the offset into the MAC result to
* begin truncation. If this value is out of
* the range of 0 ... 15, then dynamic
* truncation will be used.
* Dynamic truncation is when the last 4
* bits of the last byte of the MAC are
* used to determine the start offset.
* @return A numeric String in base 10 that includes
* {@link codeDigits} digits plus the optional checksum
* digit if requested.
* @throws NoSuchAlgorithmException if no provider makes
* either HmacSHA1 or HMAC-SHA-1
* digest algorithms available.
* @throws InvalidKeyException The secret provided was not
* a valid HMAC-SHA-1 key.
*/
static public String generateOTP(byte[] secret,
long movingFactor,
int codeDigits,
boolean addChecksum,
int truncationOffset)
throws NoSuchAlgorithmException, InvalidKeyException {
// put movingFactor value into text byte array
String result = null;
int digits = addChecksum ? (codeDigits + 1) : codeDigits;
byte[] text = new byte[8];
for (int i = text.length - 1; i >= 0; i--) {
text[i] = (byte) (movingFactor & 0xff);
movingFactor >>= 8;
}
// compute hmac hash
byte[] hash = hmac_sha1(secret, text);
// put selected bytes into result int
int offset = hash[hash.length - 1] & 0xf;
if ((0 <= truncationOffset) &&
(truncationOffset < (hash.length - 4))) {
offset = truncationOffset;
}
int binary =
((hash[offset] & 0x7f) << 24)
| ((hash[offset + 1] & 0xff) << 16)
| ((hash[offset + 2] & 0xff) << 8)
| (hash[offset + 3] & 0xff);
int otp = binary % DIGITS_POWER[codeDigits];
if (addChecksum) {
otp = (otp * 10) + calcChecksum(otp, codeDigits);
}
result = Integer.toString(otp);
while (result.length() < digits) {
result = "0" + result;
}
return result;
}
}
Google 身份驗證器App 及其原理
開源地址
https://github.com/google/google-authenticator-android
支持模式
- TOTP 基于時間
- HOTP 基于計數(shù)器
TOTP 模式要點
1. 基本參數(shù)
- HMAC算法使用固定為
HmacSHA1
- Token更新時長固定為
30
秒 - 生成token的seed(byte[]類型)長度必須大于20(低版本的app要求大于10)
- 外界輸入Token數(shù)據(jù)維度只有兩個:賬戶名稱 和 seed的Base32格式
2. 激活模式
2.1 掃描二維碼模式:
二維碼識別后的字符串滿足如下Uri格式:
- Uri的 Scheme:
otpauth
(必須) - Uri的 Authority:
totp
或hotp
(必須) - 賬戶名稱:在Authority后/ 到?直接的部分 (必須)
- 查詢字段:鍵
secret
, 值Base32
后的seed
的內(nèi)容绅你,seed
長度大于20bytes(必須) - 例如
2.2 手動輸入方式:
輸入的密鑰必須是
Base23
后的seed
的內(nèi)容