全文檢索
- 全文檢索不同于特定字段的模糊查詢(xún),使用全文檢索的效率更高皮官,并且能夠?qū)τ谥形倪M(jìn)行分詞處理
- haystack:django的一個(gè)包,可以方便地對(duì)model里面的內(nèi)容進(jìn)行索引实辑、搜索捺氢,設(shè)計(jì)為支持
- whoosh,solr,Xapian,Elasticsearc四種全文檢索引擎后端,屬于一種全文檢索的框架
- whoosh:純Python編寫(xiě)的全文搜索引擎徙菠,雖然性能比不上sphinx讯沈、xapian郁岩、Elasticsearc等婿奔,但是無(wú)二進(jìn)制包,程序不會(huì)莫名其妙的崩潰问慎,對(duì)于小型的站點(diǎn)萍摊,whoosh已經(jīng)足夠使用
- jieba:一款免費(fèi)的中文分詞包,如果覺(jué)得不好用可以使用一些收費(fèi)產(chǎn)品
操作
1.在虛擬環(huán)境中依次安裝包
pip install django-haystack
pip install whoosh
pip install jieba ```
2.修改settings.py文件
添加應(yīng)用
INSTALLED_APPS = (
...
'haystack',
)
添加搜索引擎
HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'haystack.backends.whoosh_cn_backend.WhooshEngine',
'PATH': os.path.join(BASE_DIR, 'whoosh_index'),
}
}
自動(dòng)生成索引
HAYSTACK_SIGNAL_PROCESSOR = 'haystack.signals.RealtimeSignalProcessor'
3.在項(xiàng)目的urls.py中添加url
urlpatterns = [
...
url(r'^search/', include('haystack.urls')),
]
4.在應(yīng)用目錄下建立search_indexes.py文件
coding=utf-8
from haystack import indexes
from models import GoodsInfo
class GoodsInfoIndex(indexes.SearchIndex, indexes.Indexable):
text = indexes.CharField(document=True, use_template=True)
def get_model(self):
return GoodsInfo
def index_queryset(self, using=None):
return self.get_model().objects.all()
5.在目錄“templates/search/indexes/應(yīng)用名稱(chēng)/”下創(chuàng)建“模型類(lèi)名稱(chēng)_text.txt”文件
goodsinfo_text.txt如叼,這里列出了要對(duì)哪些列的內(nèi)容進(jìn)行檢索
{{ object.gName }}
{{ object.gSubName }}
{{ object.gDes }}
6.在目錄“templates/search/”下建立search.html
<!DOCTYPE html>
<html>
<head>
<title></title>
</head>
<body>
{% if query %}
<h3>搜索結(jié)果如下:</h3>
{% for result in page.object_list %}
<a href="/{{ result.object.id }}/">{{ result.object.gName }}</a>
{% empty %}
<p>啥也沒(méi)找到</p>
{% endfor %}
{% if page.has_previous or page.has_next %}
<div>
{% if page.has_previous %}<a href="?q={{ query }}&page={{ page.previous_page_number }}">{% endif %}« 上一頁(yè){% if page.has_previous %}</a>{% endif %}
|
{% if page.has_next %}<a href="?q={{ query }}&page={{ page.next_page_number }}">{% endif %}下一頁(yè) »{% if page.has_next %}</a>{% endif %}
</div>
{% endif %}
{% endif %}
</body>
</html>
7.建立ChineseAnalyzer.py文件
保存在haystack的安裝文件夾下冰木,路徑如“/home/python/.virtualenvs/django_py2/lib/python2.7/site-packages/haystack/backends”
import jieba
from whoosh.analysis import Tokenizer, Token
class ChineseTokenizer(Tokenizer):
def call(self, value, positions=False, chars=False,
keeporiginal=False, removestops=True,
start_pos=0, start_char=0, mode='', **kwargs):
t = Token(positions, chars, removestops=removestops, mode=mode,
**kwargs)
seglist = jieba.cut(value, cut_all=True)
for w in seglist:
t.original = t.text = w
t.boost = 1.0
if positions:
t.pos = start_pos + value.find(w)
if chars:
t.startchar = start_char + value.find(w)
t.endchar = start_char + value.find(w) + len(w)
yield t
def ChineseAnalyzer():
return ChineseTokenizer()
8.復(fù)制whoosh_backend.py文件,改名為whoosh_cn_backend.py
注意:復(fù)制出來(lái)的文件名笼恰,末尾會(huì)有一個(gè)空格踊沸,記得要?jiǎng)h除這個(gè)空格
from .ChineseAnalyzer import ChineseAnalyzer
查找
analyzer=StemmingAnalyzer()
改為
analyzer=ChineseAnalyzer()
9.生成索引
初始化索引數(shù)據(jù)
python manage.py rebuild_index
注意是templates/search/indexes/應(yīng)用 目錄下
![捕獲.PNG](http://upload-images.jianshu.io/upload_images/2257864-c1baf7d1af29b358.PNG?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
get方式查詢(xún)
http://127.0.0.1:8000/search/?q=參數(shù)&page=1