內存泄漏是指由于疏忽或錯誤造成程序未能釋放已經(jīng)不再使用的內存秧了。內存泄漏并非指內存在物理上的消失具垫,而是應用程序分配某段內存后侣诵,由于設計錯誤殴穴,導致在釋放該段內存之前就失去了對該段內存的控制,從而造成了內存的浪費淮韭。
我們平時開發(fā)過程中不可避免的會遇到內存泄漏問題垢粮,你是如何排查的呢?估計你是使用下面這幾個工具吧靠粪?
- valgrind
- mtrace
- dmalloc
- ccmalloc
- memwatch
- debug_new
這里程序喵向大家推薦新的一個排查內存泄漏的工具:AddressSanitizer(ASan)蜡吧,該工具為gcc自帶毫蚓,4.8以上版本都可以使用,支持Linux昔善、OS元潘、Android等多種平臺,不止可以檢測內存泄漏君仆,它其實是一個內存錯誤檢測工具柬批,可以檢測的問題有:
- 內存泄漏
- 堆棧和全局內存越界訪問
- free后繼續(xù)使用
- 局部內存被外層使用
- Initialization order bugs(中文不知道怎么翻譯才好,后面有代碼舉例袖订,重要)
使用方法直接看我下面的代碼:
檢測內存泄漏
內存泄漏代碼:
#include <stdlib.h>
void func1() { malloc(7); }
void func2() { malloc(5); }
int main() {
func1();
func2();
return 0;
}
編譯and輸出:
g++ -fsanitize=address -g test_leak.cc && ./a.out
=================================================================
==103==ERROR: LeakSanitizer: detected memory leaks
Direct leak of 7 byte(s) in 1 object(s) allocated from:
#0 0x7f95b231eb40 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.4+0xdeb40)
#1 0x7f95b36007f7 in func1() /home/wangzhiqiang/test/test_leak.cc:3
#2 0x7f95b3600814 in main /home/wangzhiqiang/test/test_leak.cc:8
#3 0x7f95b1e61b96 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
Direct leak of 5 byte(s) in 1 object(s) allocated from:
#0 0x7f95b231eb40 in __interceptor_malloc (/usr/lib/x86_64-linux-gnu/libasan.so.4+0xdeb40)
#1 0x7f95b3600808 in func2() /home/wangzhiqiang/test/test_leak.cc:5
#2 0x7f95b3600819 in main /home/wangzhiqiang/test/test_leak.cc:9
#3 0x7f95b1e61b96 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
SUMMARY: AddressSanitizer: 12 byte(s) leaked in 2 allocation(s).
編譯方式很簡單氮帐,只需要添加-fsanitize=address -g就可以檢測出具體產(chǎn)生內存泄漏的位置以及泄漏空間的大小。
檢測堆棧內存越界訪問
示例:
#include <iostream>
int main() {
int *array = new int[100];
array[0] = 0;
int res = array[100]; // out of bounds
delete[] array;
return res;
}
編譯and輸出:
g++ -fsanitize=address -g test_leak.cc && ./a.out
=================================================================
==110==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6140000001d0 at pc 0x7f0e06400d2e bp 0x7ffff5963f10 sp 0x7ffff5963f00
READ of size 4 at 0x6140000001d0 thread T0
#0 0x7f0e06400d2d in main /home/wangzhiqiang/test/test_leak.cc:6
#1 0x7f0e048d1b96 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
#2 0x7f0e06400bb9 in _start (/mnt/d/wzq/wzq/util/test/a.out+0xbb9)
0x6140000001d0 is located 0 bytes to the right of 400-byte region [0x614000000040,0x6140000001d0)
allocated by thread T0 here:
#0 0x7f0e05120608 in operator new[](unsigned long) (/usr/lib/x86_64-linux-gnu/libasan.so.4+0xe0608)
#1 0x7f0e06400cab in main /home/wangzhiqiang/test/test_leak.cc:4
#2 0x7f0e048d1b96 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
SUMMARY: AddressSanitizer: heap-buffer-overflow /home/wangzhiqiang/test/test_leak.cc:6 in main
Shadow bytes around the buggy address:
0x0c287fff7fe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c287fff7ff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c287fff8000: fa fa fa fa fa fa fa fa 00 00 00 00 00 00 00 00
0x0c287fff8010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c287fff8020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x0c287fff8030: 00 00 00 00 00 00 00 00 00 00[fa]fa fa fa fa fa
0x0c287fff8040: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c287fff8050: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c287fff8060: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c287fff8070: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c287fff8080: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5
Stack use after scope: f8
Global redzone: f9
Global init order: f6
Poisoned by user: f7
Container overflow: fc
Array cookie: ac
Intra object redzone: bb
ASan internal: fe
Left alloca redzone: ca
Right alloca redzone: cb
==110==ABORTING
可以方便定位到堆棧內存越界訪問的錯誤洛姑。
全局內存越界訪問:
示例:
#include <iostream>
int global_array[100] = {0};
int main() {
int res = global_array[100]; // out of bounds
return 0;
}
編譯and輸出:
g++ -fsanitize=address -g test_leak.cc && ./a.out
=================================================================
==116==ERROR: AddressSanitizer: global-buffer-overflow on address 0x7f42e6e02310 at pc 0x7f42e6c00c84 bp 0x7fffdda52780 sp 0x7fffdda52770
READ of size 4 at 0x7f42e6e02310 thread T0
#0 0x7f42e6c00c83 in main /home/wangzhiqiang/test/test_leak.cc:6
#1 0x7f42e50d1b96 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
#2 0x7f42e6c00b69 in _start (/mnt/d/wzq/wzq/util/test/a.out+0xb69)
0x7f42e6e02310 is located 0 bytes to the right of global variable 'global_array' defined in 'test_leak.cc:3:5' (0x7f42e6e02180) of size 400
SUMMARY: AddressSanitizer: global-buffer-overflow /home/wangzhiqiang/test/test_leak.cc:6 in main
Shadow bytes around the buggy address:
0x0fe8dcdb8410: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe8dcdb8420: 00 00 00 00 00 00 00 00 01 f9 f9 f9 f9 f9 f9 f9
0x0fe8dcdb8430: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe8dcdb8440: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe8dcdb8450: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x0fe8dcdb8460: 00 00[f9]f9 f9 f9 f9 f9 00 00 00 00 00 00 00 00
0x0fe8dcdb8470: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe8dcdb8480: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe8dcdb8490: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe8dcdb84a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe8dcdb84b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5
Stack use after scope: f8
Global redzone: f9
Global init order: f6
Poisoned by user: f7
Container overflow: fc
Array cookie: ac
Intra object redzone: bb
ASan internal: fe
Left alloca redzone: ca
Right alloca redzone: cb
==116==ABORTING
局部內存被外層使用
示例:
#include <iostream>
volatile int *p = 0;
int main() {
{
int x = 0;
p = &x;
}
*p = 5;
return 0;
}
編譯and輸出:
g++ -fsanitize=address -g test_leak.cc && ./a.out
=================================================================
==243==ERROR: AddressSanitizer: stack-use-after-scope on address 0x7fffce12a4b0 at pc 0x7f3993e00e7e bp 0x7fffce12a480 sp 0x7fffce12a470
WRITE of size 4 at 0x7fffce12a4b0 thread T0
#0 0x7f3993e00e7d in main /home/wangzhiqiang/test/test_leak.cc:10
#1 0x7f39922d1b96 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
#2 0x7f3993e00c89 in _start (/mnt/d/wzq/wzq/util/test/a.out+0xc89)
Address 0x7fffce12a4b0 is located in stack of thread T0 at offset 32 in frame
#0 0x7f3993e00d79 in main /home/wangzhiqiang/test/test_leak.cc:5
This frame has 1 object(s):
[32, 36) 'x' <== Memory access at offset 32 is inside this variable
HINT: this may be a false positive if your program uses some custom stack unwind mechanism or swapcontext
(longjmp and C++ exceptions *are* supported)
SUMMARY: AddressSanitizer: stack-use-after-scope /home/wangzhiqiang/test/test_leak.cc:10 in main
Shadow bytes around the buggy address:
0x100079c1d440: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x100079c1d450: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x100079c1d460: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x100079c1d470: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x100079c1d480: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x100079c1d490: 00 00 f1 f1 f1 f1[f8]f2 f2 f2 00 00 00 00 00 00
0x100079c1d4a0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x100079c1d4b0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x100079c1d4c0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x100079c1d4d0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x100079c1d4e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5
Stack use after scope: f8
Global redzone: f9
Global init order: f6
Poisoned by user: f7
Container overflow: fc
Array cookie: ac
Intra object redzone: bb
ASan internal: fe
Left alloca redzone: ca
Right alloca redzone: cb
==243==ABORTING
free后被使用
示例:
#include <iostream>
int main() {
int *array = new int[100];
delete[] array;
int a = array[0]; // error
return 0;
}
編譯and輸出:
g++ -fsanitize=address -g test_leak.cc && ./a.out
=================================================================
==282==ERROR: AddressSanitizer: heap-use-after-free on address 0x614000000040 at pc 0x7f209fa00caa bp 0x7ffff2a15020 sp 0x7ffff2a15010
READ of size 4 at 0x614000000040 thread T0
#0 0x7f209fa00ca9 in main /home/wangzhiqiang/test/test_leak.cc:6
#1 0x7f209ded1b96 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
#2 0x7f209fa00b69 in _start (/mnt/d/wzq/wzq/util/test/a.out+0xb69)
0x614000000040 is located 0 bytes inside of 400-byte region [0x614000000040,0x6140000001d0)
freed by thread T0 here:
#0 0x7f209e721480 in operator delete[](void*) (/usr/lib/x86_64-linux-gnu/libasan.so.4+0xe1480)
#1 0x7f209fa00c72 in main /home/wangzhiqiang/test/test_leak.cc:5
#2 0x7f209ded1b96 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
previously allocated by thread T0 here:
#0 0x7f209e720608 in operator new[](unsigned long) (/usr/lib/x86_64-linux-gnu/libasan.so.4+0xe0608)
#1 0x7f209fa00c5b in main /home/wangzhiqiang/test/test_leak.cc:4
#2 0x7f209ded1b96 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21b96)
SUMMARY: AddressSanitizer: heap-use-after-free /home/wangzhiqiang/test/test_leak.cc:6 in main
Shadow bytes around the buggy address:
0x0c287fff7fb0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c287fff7fc0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c287fff7fd0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c287fff7fe0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0c287fff7ff0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
=>0x0c287fff8000: fa fa fa fa fa fa fa fa[fd]fd fd fd fd fd fd fd
0x0c287fff8010: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0x0c287fff8020: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
0x0c287fff8030: fd fd fd fd fd fd fd fd fd fd fa fa fa fa fa fa
0x0c287fff8040: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
0x0c287fff8050: fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa fa
Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5
Stack use after scope: f8
Global redzone: f9
Global init order: f6
Poisoned by user: f7
Container overflow: fc
Array cookie: ac
Intra object redzone: bb
ASan internal: fe
Left alloca redzone: ca
Right alloca redzone: cb
==282==ABORTING
Initialization order bugs
示例上沐,這里有兩個文件:
// test_memory1.cc
#include <stdio.h>
extern int extern_global;
int read_extern_global() { return extern_global; }
int x = read_extern_global() + 1;
int main() {
printf("%d\n", x);
return 0;
}
// test_memory2.cc
int foo() { return 123; }
int extern_global = foo();
第一種編譯方式輸出如下:
g++ test_memory1.cc test_memory2.cc && ./a.out
1
第二種編譯方式輸出如下:
g++ test_memory2.cc test_memory1.cc && ./a.out
124
這種問題我們平時編程過程中可以都不會太注意,然而通過ASan可以檢測出這種潛在的bug:
編譯and輸出:
g++ -fsanitize=address -g test_memory1.cc test_memory2.cc
ASAN_OPTIONS=check_initialization_order=true:strict_init_order=true ./a.out
=================================================================
==419==ERROR: AddressSanitizer: initialization-order-fiasco on address 0x7f46c20021a0 at pc 0x7f46c1e00c28 bp 0x7fffe423d920 sp 0x7fffe423d910
READ of size 4 at 0x7f46c20021a0 thread T0
#0 0x7f46c1e00c27 in read_extern_global() /home/wangzhiqiang/test/test_memory1.cc:3
#1 0x7f46c1e00cb3 in __static_initialization_and_destruction_0 /home/wangzhiqiang/test/test_memory1.cc:4
#2 0x7f46c1e00d0a in _GLOBAL__sub_I__Z18read_extern_globalv /home/wangzhiqiang/test/test_memory1.cc:8
#3 0x7f46c1e00e5c in __libc_csu_init (/mnt/d/wzq/wzq/util/test/a.out+0xe5c)
#4 0x7f46c0461b27 in __libc_start_main (/lib/x86_64-linux-gnu/libc.so.6+0x21b27)
#5 0x7f46c1e00b09 in _start (/mnt/d/wzq/wzq/util/test/a.out+0xb09)
0x7f46c20021a0 is located 0 bytes inside of global variable 'extern_global' defined in 'test_memory2.cc:2:5' (0x7f46c20021a0) of size 4
registered at:
#0 0x7f46c08764a8 (/usr/lib/x86_64-linux-gnu/libasan.so.4+0x364a8)
#1 0x7f46c1e00e0b in _GLOBAL__sub_I_00099_1__Z3foov (/mnt/d/wzq/wzq/util/test/a.out+0xe0b)
#2 0x7f46c1e00e5c in __libc_csu_init (/mnt/d/wzq/wzq/util/test/a.out+0xe5c)
SUMMARY: AddressSanitizer: initialization-order-fiasco /home/wangzhiqiang/test/test_memory1.cc:3 in read_extern_global()
Shadow bytes around the buggy address:
0x0fe9583f83e0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe9583f83f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe9583f8400: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe9583f8410: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe9583f8420: 00 00 00 00 00 00 00 00 04 f9 f9 f9 f9 f9 f9 f9
=>0x0fe9583f8430: 00 00 00 00[f6]f6 f6 f6 f6 f6 f6 f6 00 00 00 00
0x0fe9583f8440: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe9583f8450: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe9583f8460: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe9583f8470: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x0fe9583f8480: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Shadow byte legend (one shadow byte represents 8 application bytes):
Addressable: 00
Partially addressable: 01 02 03 04 05 06 07
Heap left redzone: fa
Freed heap region: fd
Stack left redzone: f1
Stack mid redzone: f2
Stack right redzone: f3
Stack after return: f5
Stack use after scope: f8
Global redzone: f9
Global init order: f6
Poisoned by user: f7
Container overflow: fc
Array cookie: ac
Intra object redzone: bb
ASan internal: fe
Left alloca redzone: ca
Right alloca redzone: cb
==419==ABORTING
注意:這里在運行程序前需要添加環(huán)境變量:
ASAN_OPTIONS=check_initialization_order=true:strict_init_order=true
小總結
ASan是個很好的檢測內存問題的工具楞艾,不需要配置環(huán)境参咙,使用還方便,編譯時只需要-fsanitize=address -g就可以硫眯,運行程序時候可以選擇添加對應的ASAN_OPTIONS環(huán)境變量就可以檢測出很多內存問題蕴侧。它的錯誤信息也很有用,明確指出當前是什么類型的內存錯誤两入,如:
- detected memory leaks
- heap-buffer-overflow
- stack-buffer-overflow
- global-buffer-overflow
- heap-use-after-free
- initialization-order-fiasco
具體可以看google的官方文檔:https://github.com/google/sanitizers/wiki/AddressSanitizer
更多文章净宵,請關注我的V X 公 主 號:程序喵大人,歡迎交流裹纳。