面試的時候經(jīng)常會被問算法的事情,今天就這個問題查找了一些算法的總結(jié)!
算法一:快速排序算法
快速排序是由東尼·霍爾所發(fā)展的一種排序算法宪彩。在平均狀況下,排序 n 個項目要Ο(n log n)次比較背苦。在最壞狀況下則需要Ο(n2)次比較,但這種狀況并不常見。事實上痰哨,快速排序通常明顯比其他Ο(n log n) 算法更快,因為它的內(nèi)部循環(huán)(inner loop)可以在大部分的架構(gòu)上很有效率地被實現(xiàn)出來匾嘱。
快速排序使用分治法(Divide and conquer)策略來把一個串行(list)分為兩個子串行(sub-lists)斤斧。
算法步驟:
1 從數(shù)列中挑出一個元素,稱為 “基準(zhǔn)”(pivot)奄毡,
2 重新排序數(shù)列折欠,所有元素比基準(zhǔn)值小的擺放在基準(zhǔn)前面,所有元素比基準(zhǔn)值大的擺在基準(zhǔn)的后面(相同的數(shù)可以到任一邊)。在這個分區(qū)退出之后锐秦,該基準(zhǔn)就處于數(shù)列的中間位置咪奖。這個稱為分區(qū)(partition)操作。
3 遞歸地(recursive)把小于基準(zhǔn)值元素的子數(shù)列和大于基準(zhǔn)值元素的子數(shù)列排序酱床。
遞歸的最底部情形羊赵,是數(shù)列的大小是零或一,也就是永遠(yuǎn)都已經(jīng)被排序好了扇谣。雖然一直遞歸下去昧捷,但是這個算法總會退出,因為在每次的迭代(iteration)中罐寨,它至少會把一個元素擺到它最后的位置去靡挥。
算法二:堆排序算法
堆排序(Heapsort)是指利用堆這種數(shù)據(jù)結(jié)構(gòu)所設(shè)計的一種排序算法。堆積是一個近似完全二叉樹的結(jié)構(gòu)鸯绿,并同時滿足堆積的性質(zhì):即子結(jié)點的鍵值或索引總是小于(或者大于)它的父節(jié)點跋破。
堆排序的平均時間復(fù)雜度為Ο(nlogn) 。
算法步驟:
創(chuàng)建一個堆H[0..n-1]
把堆首(最大值)和堆尾互換
3. 把堆的尺寸縮小1瓶蝴,并調(diào)用shift_down(0),目的是把新的數(shù)組頂端數(shù)據(jù)調(diào)整到相應(yīng)位置
4. 重復(fù)步驟2毒返,直到堆的尺寸為1
算法三:歸并排序
歸并排序(Merge sort,臺灣譯作:合并排序)是建立在歸并操作上的一種有效的排序算法舷手。該算法是采用分治法(Divide and Conquer)的一個非常典型的應(yīng)用拧簸。
算法步驟:
1. 申請空間,使其大小為兩個已經(jīng)排序序列之和男窟,該空間用來存放合并后的序列
2. 設(shè)定兩個指針盆赤,最初位置分別為兩個已經(jīng)排序序列的起始位置
3. 比較兩個指針?biāo)赶虻脑兀x擇相對小的元素放入到合并空間蝎宇,并移動指針到下一位置
4. 重復(fù)步驟3直到某一指針達(dá)到序列尾
5. 將另一序列剩下的所有元素直接復(fù)制到合并序列尾
算法四:二分查找算法
二分查找算法是一種在有序數(shù)組中查找某一特定元素的搜索算法弟劲。搜素過程從數(shù)組的中間元素開始,如果中間元素正好是要查找的元素姥芥,則搜素過程結(jié)束兔乞;如果某一特定元素大于或者小于中間元素,則在數(shù)組大于或小于中間元素的那一半中查找凉唐,而且跟開始一樣從中間元素開始比較庸追。如果在某一步驟數(shù)組為空,則代表找不到台囱。這種搜索算法每一次比較都使搜索范圍縮小一半淡溯。折半搜索每次把搜索區(qū)域減少一半,時間復(fù)雜度為Ο(logn) 簿训。
算法五:BFPRT(線性查找算法)
BFPRT算法解決的問題十分經(jīng)典咱娶,即從某n個元素的序列中選出第k大(第k忻准洹)的元素,通過巧妙的分析膘侮,BFPRT可以保證在最壞情況下仍為線性時間復(fù)雜度屈糊。該算法的思想與快速排序思想相似,當(dāng)然琼了,為使得算法在最壞情況下逻锐,依然能達(dá)到o(n)的時間復(fù)雜度,五位算法作者做了精妙的處理雕薪。
算法步驟:
1. 將n個元素每5個一組昧诱,分成n/5(上界)組。
2. 取出每一組的中位數(shù)所袁,任意排序方法盏档,比如插入排序。
3. 遞歸的調(diào)用selection算法查找上一步中所有中位數(shù)的中位數(shù)纲熏,設(shè)為x妆丘,偶數(shù)個中位數(shù)的情況下設(shè)定為選取中間小的一個锄俄。
4. 用x來分割數(shù)組局劲,設(shè)小于等于x的個數(shù)為k,大于x的個數(shù)即為n-k奶赠。
5. 若i==k鱼填,返回x;若ik毅戈,在大于x的元素中遞歸查找第i-k小的元素苹丸。
終止條件:n=1時,返回的即是i小元素苇经。
算法六:DFS(深度優(yōu)先搜索)
深度優(yōu)先搜索算法(Depth-First-Search)赘理,是搜索算法的一種。它沿著樹的深度遍歷樹的節(jié)點扇单,盡可能深的搜索樹的分支商模。當(dāng)節(jié)點v的所有邊都己被探尋過,搜索將回溯到發(fā)現(xiàn)節(jié)點v的那條邊的起始節(jié)點蜘澜。這一過程一直進(jìn)行到已發(fā)現(xiàn)從源節(jié)點可達(dá)的所有節(jié)點為止施流。如果還存在未被發(fā)現(xiàn)的節(jié)點,則選擇其中一個作為源節(jié)點并重復(fù)以上過程鄙信,整個進(jìn)程反復(fù)進(jìn)行直到所有節(jié)點都被訪問為止瞪醋。DFS屬于盲目搜索。
深度優(yōu)先搜索是圖論中的經(jīng)典算法装诡,利用深度優(yōu)先搜索算法可以產(chǎn)生目標(biāo)圖的相應(yīng)拓?fù)渑判虮硪埽猛負(fù)渑判虮砜梢苑奖愕慕鉀Q很多相關(guān)的圖論問題践盼,如最大路徑問題等等。一般用堆數(shù)據(jù)結(jié)構(gòu)來輔助實現(xiàn)DFS算法宾巍。
深度優(yōu)先遍歷圖算法步驟:
1. 訪問頂點v宏侍;
2. 依次從v的未被訪問的鄰接點出發(fā),對圖進(jìn)行深度優(yōu)先遍歷蜀漆;直至圖中和v有路徑相通的頂點都被訪問谅河;
3. 若此時圖中尚有頂點未被訪問,則從一個未被訪問的頂點出發(fā)确丢,重新進(jìn)行深度優(yōu)先遍歷绷耍,直到圖中所有頂點均被訪問過為止。
上述描述可能比較抽象鲜侥,舉個實例:
DFS 在訪問圖中某一起始頂點 v 后褂始,由 v 出發(fā),訪問它的任一鄰接頂點 w1描函;再從 w1 出發(fā)崎苗,訪問與 w1鄰 接但還沒有訪問過的頂點 w2;然后再從 w2 出發(fā)舀寓,進(jìn)行類似的訪問胆数,… 如此進(jìn)行下去,直至到達(dá)所有的鄰接頂點都被訪問過的頂點 u 為止互墓。
接著必尼,退回一步,退到前一次剛訪問過的頂點篡撵,看是否還有其它沒有被訪問的鄰接頂點判莉。如果有,則訪問此頂點育谬,之后再從此頂點出發(fā)券盅,進(jìn)行與前述類似的訪問;如果沒有膛檀,就再退回一步進(jìn)行搜索锰镀。重復(fù)上述過程,直到連通圖中所有頂點都被訪問過為止宿刮。
算法七:BFS(廣度優(yōu)先搜索)
廣度優(yōu)先搜索算法(Breadth-First-Search)互站,是一種圖形搜索算法。簡單的說僵缺,BFS是從根節(jié)點開始胡桃,沿著樹(圖)的寬度遍歷樹(圖)的節(jié)點。如果所有節(jié)點均被訪問磕潮,則算法中止翠胰。BFS同樣屬于盲目搜索容贝。一般用隊列數(shù)據(jù)結(jié)構(gòu)來輔助實現(xiàn)BFS算法。
算法步驟:
1. 首先將根節(jié)點放入隊列中之景。
2. 從隊列中取出第一個節(jié)點斤富,并檢驗它是否為目標(biāo)。
如果找到目標(biāo)锻狗,則結(jié)束搜尋并回傳結(jié)果满力。
否則將它所有尚未檢驗過的直接子節(jié)點加入隊列中。
3. 若隊列為空轻纪,表示整張圖都檢查過了——亦即圖中沒有欲搜尋的目標(biāo)油额。結(jié)束搜尋并回傳“找不到目標(biāo)”。
4. 重復(fù)步驟2刻帚。
算法八:Dijkstra算法
戴克斯特拉算法(Dijkstra’s algorithm)是由荷蘭計算機科學(xué)家艾茲赫爾·戴克斯特拉提出潦嘶。迪科斯徹算法使用了廣度優(yōu)先搜索解決非負(fù)權(quán)有向圖的單源最短路徑問題,算法最終得到一個最短路徑樹崇众。該算法常用于路由算法或者作為其他圖算法的一個子模塊掂僵。
該算法的輸入包含了一個有權(quán)重的有向圖 G,以及G中的一個來源頂點 S顷歌。我們以 V 表示 G 中所有頂點的集合锰蓬。每一個圖中的邊,都是兩個頂點所形成的有序元素對衙吩。(u, v) 表示從頂點 u 到 v 有路徑相連互妓。我們以 E 表示G中所有邊的集合,而邊的權(quán)重則由權(quán)重函數(shù) w: E → [0, ∞] 定義坤塞。因此,w(u, v) 就是從頂點 u 到頂點 v 的非負(fù)權(quán)重(weight)澈蚌。邊的權(quán)重可以想像成兩個頂點之間的距離摹芙。任兩點間路徑的權(quán)重,就是該路徑上所有邊的權(quán)重總和宛瞄。已知有 V 中有頂點 s 及 t浮禾,Dijkstra 算法可以找到 s 到 t的最低權(quán)重路徑(例如,最短路徑)份汗。這個算法也可以在一個圖中盈电,找到從一個頂點 s 到任何其他頂點的最短路徑。對于不含負(fù)權(quán)的有向圖杯活,Dijkstra算法是目前已知的最快的單源最短路徑算法匆帚。
算法步驟:
1. 初始時令 S={V0},T={其余頂點},T中頂點對應(yīng)的距離值
若存在旁钧,d(V0,Vi)為弧上的權(quán)值
若不存在吸重,d(V0,Vi)為∞
2. 從T中選取一個其距離值為最小的頂點W且不在S中互拾,加入S
3. 對其余T中頂點的距離值進(jìn)行修改:若加進(jìn)W作中間頂點,從V0到Vi的距離值縮短嚎幸,則修改此距離值
重復(fù)上述步驟2颜矿、3,直到S中包含所有頂點嫉晶,即W=Vi為止
算法九:動態(tài)規(guī)劃算法
動態(tài)規(guī)劃(Dynamic programming)是一種在數(shù)學(xué)骑疆、計算機科學(xué)和經(jīng)濟學(xué)中使用的,通過把原問題分解為相對簡單的子問題的方式求解復(fù)雜問題的方法替废。 動態(tài)規(guī)劃常常適用于有重疊子問題和最優(yōu)子結(jié)構(gòu)性質(zhì)的問題封断,動態(tài)規(guī)劃方法所耗時間往往遠(yuǎn)少于樸素解法。
動態(tài)規(guī)劃背后的基本思想非常簡單舶担。大致上坡疼,若要解一個給定問題,我們需要解其不同部分(即子問題)衣陶,再合并子問題的解以得出原問題的解柄瑰。 通常許多子問題非常相似,為此動態(tài)規(guī)劃法試圖僅僅解決每個子問題一次剪况,從而減少計算量: 一旦某個給定子問題的解已經(jīng)算出教沾,則將其記憶化存儲,以便下次需要同一個子問題解之時直接查表译断。 這種做法在重復(fù)子問題的數(shù)目關(guān)于輸入的規(guī)模呈指數(shù)增長時特別有用授翻。
關(guān)于動態(tài)規(guī)劃最經(jīng)典的問題當(dāng)屬背包問題。
算法步驟:
1. 最優(yōu)子結(jié)構(gòu)性質(zhì)孙咪。如果問題的最優(yōu)解所包含的子問題的解也是最優(yōu)的堪唐,我們就稱該問題具有最優(yōu)子結(jié)構(gòu)性質(zhì)(即滿足最優(yōu)化原理)。最優(yōu)子結(jié)構(gòu)性質(zhì)為動態(tài)規(guī)劃算法解決問題提供了重要線索翎蹈。
2. 子問題重疊性質(zhì)淮菠。子問題重疊性質(zhì)是指在用遞歸算法自頂向下對問題進(jìn)行求解時,每次產(chǎn)生的子問題并不總是新問題荤堪,有些子問題會被重復(fù)計算多次合陵。動態(tài)規(guī)劃算法正是利用了這種子問題的重疊性質(zhì),對每一個子問題只計算一次澄阳,然后將其計算結(jié)果保存在一個表格中拥知,當(dāng)再次需要計算已經(jīng)計算過的子問題時,只是在表格中簡單地查看一下結(jié)果碎赢,從而獲得較高的效率低剔。
算法十:樸素貝葉斯分類算法
樸素貝葉斯分類算法是一種基于貝葉斯定理的簡單概率分類算法。貝葉斯分類的基礎(chǔ)是概率推理揩抡,就是在各種條件的存在不確定户侥,僅知其出現(xiàn)概率的情況下镀琉,如何完成推理和決策任務(wù)。概率推理是與確定性推理相對應(yīng)的蕊唐。而樸素貝葉斯分類器是基于獨立假設(shè)的屋摔,即假設(shè)樣本每個特征與其他特征都不相關(guān)。
樸素貝葉斯分類器依靠精確的自然概率模型替梨,在有監(jiān)督學(xué)習(xí)的樣本集中能獲取得非常好的分類效果钓试。在許多實際應(yīng)用中,樸素貝葉斯模型參數(shù)估計使用最大似然估計方法副瀑,換言之樸素貝葉斯模型能工作并沒有用到貝葉斯概率或者任何貝葉斯模型弓熏。
盡管是帶著這些樸素思想和過于簡單化的假設(shè),但樸素貝葉斯分類器在很多復(fù)雜的現(xiàn)實情形中仍能夠取得相當(dāng)好的效果糠睡。