Amplicon sequencing analysis pipeline through qiime2 platform
qiime2是擴增子數(shù)據(jù)分析的最佳平臺之一众眨,其提供了大量從原始data到統(tǒng)計分析的插件缀程,尤其是它的可重復(fù)分析且可擴展插件的理念使得其成為擴增子分析首選的平臺。
Platform
qiime2是擴增子數(shù)據(jù)分析的最佳平臺之一盲赊,其提供了大量從原始data到統(tǒng)計分析的插件,尤其是它的可重復(fù)分析且可擴展插件的理念使得其成為擴增子分析首選的平臺敷扫。對于如何安裝該平臺哀蘑,個人建議使用conda安裝,并且官網(wǎng)也提供了conda安裝的yaml文件葵第,但為了快速安裝绘迁,我們需要把conda鏡像重新設(shè)置修改一下。
step1: download the yaml file
wget https://data.qiime2.org/distro/core/qiime2-2020.8-py36-linux-conda.yml
step2: update the conda version
conda update conda -y
step3: modify the .condarc and yaml file
# reset the conda channels
channels:
- conda-forge
- bioconda
- biobakery
- qiime2
- ohmeta
- defaults
show_channel_urls: true
channel_alias: https://mirrors.bfsu.edu.cn/anaconda
default_channels:
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/main
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/free
- https://mirrors.bfsu.edu.cn/anaconda/pkgs/r
custom_channels:
conda-forge: https://mirrors.bfsu.edu.cn/anaconda/cloud
bioconda: https://mirrors.bfsu.edu.cn/anaconda/cloud
biobakery: https://mirrors.bfsu.edu.cn/anaconda/cloud
qiime2: https://mirrors.bfsu.edu.cn/anaconda/cloud
ohmeta: https://mirrors.bfsu.edu.cn/anaconda/cloud
knights-lab: https://conda.anaconda.org
alienzj: https://conda.anaconda.org
# change the yaml channel
- qiime2/label/r2020.8
+ qiime2
step4: create the qiime2-2020.8 conda environment
conda env create -n qiime2-2020.8 --file qiime2-2020.8-py36-linux-conda_update.yml -y
step5: activate environment and test installation
# actiavate
conda activate qiime2-2020.8
# test
qiime --help
# deactivate
conda deactivate
# Note: if you have trouble with no activate command, you need use *eval "$(conda shell.bash hook)"*
Analysis pipeline
Check the fastq phred score
通過fastqc軟件處理fastq獲取原始數(shù)據(jù)的reads質(zhì)量分布等情況卒密,為后續(xù)設(shè)置堿基質(zhì)量閾值做好準(zhǔn)備缀台。
fastqc --noextract -f fastq input.fq.gz -o result/outdir
Get the positions of primer in the fastq
DADA2算法需要提供forward和reverse引物序列在reads上的位置信息,我們可以通過使用usearch和vsearch軟件獲取引物的位置信息栅受,并將其作為參數(shù)配置給qiime2 dada2插件将硝。獲取primer_hits.txt文件的開始和結(jié)束10個reads的primer信息恭朗,找到引物的位置信息。
# step1: merge fq
echo "step1: mkdir result and merger all PE fq files"
mkdir result
./usearch -fastq_mergepairs rawdata/*_R1.fq -fastqout result/all_samples_merged.fq -relabel @
# step2: sampling sequence
echo "step2: sampling sequence for primer check"
./usearch -fastx_subsample result/all_samples_merged.fq -sample_size 20000 -fastqout result/all_sub_for_primer_check.fq
# step3: search primer position
echo "step3: search primer position of the sequence"
./usearch -search_oligodb result/all_sub_for_primer_check.fq -db primers.fasta -strand both -userout result/primer_hits.txt -userfields query+qlo+qhi+qstrand
# step4: obtain the position information of primer
head primer_hits.txt # head 23 tail 19
#HTN1.182 452 471 -
#HTN1.182 7 23 +
#HTN1.183 447 466 -
#HTN1.183 7 23 +
#HTN1.233 428 447 -
#HTN1.233 7 23 +
#HTN1.570 430 449 -
#HTN1.570 7 23 +
#HTN1.219 448 467 -
#HTN1.219 7 23 +
tail primer_hits.txt # head 23 tail 19
#Normal6.996134 429 448 -
#Normal6.996134 7 23 +
#Normal6.996331 430 449 -
#Normal6.996331 7 23 +
#Normal6.996257 448 467 -
#Normal6.996257 7 23 +
#Normal6.996360 429 448 -
#Normal6.996360 7 23 +
#Normal6.961965 430 449 -
#Normal6.961965 7 23 +
Convert fastq into qza
step1: 準(zhǔn)備符合import格式的文件 manifest.tsv(包含樣本ID以及forward和reverse fq路徑的文件)和sample-metadata.tsv(樣本的分組信息)
# generate manifest.tsv
find /rawdata/ -name "*gz" | grep '1_' | sort | perl -e 'print"sampleid\tforward-absolute-filepath\treverse-absolute-filepath\n"; while(<>){chomp; $name=(split("\/", $_))[-1]; $name1=$name; $name2=$_; $name1=~s/_[1|2]_.fq.gz//g; $name2=~s/1_/2_/; print "$name1\t$_\t$name2\n";}' > pe-33-manifest-trimmed.tsv
# sample-metadata.tsv details
#sampleid Treatment
#HTN1 HTN
#HTN2 HTN
#Normal1 Normal
step2: import fastq into qza依疼,雙端和單端數(shù)據(jù)的import參數(shù)不同痰腮,并且不同的phred score使用的參數(shù)也不一樣
# PE mode
qiime tools import \
--type 'SampleData[PairedEndSequencesWithQuality]' \
--input-path pe-33-manifest-trimmed.tsv \
--output-path result/paired-end-demux.qza \
--input-format PairedEndFastqManifestPhred33V2
# SE mode
qiime tools import \
--type "SampleData[SequencesWithQuality]" \
--input-path single-33-manifest.tsv \
--output-path result/single-end-demux.qza \
--input-format SingleEndFastqManifestPhred33V2
Sequence quality control
Step1: 為了更加準(zhǔn)確地過濾低質(zhì)量的堿基,可以再使用qiime2自帶summarize插件查看低質(zhì)量堿基的位置分布律罢,最后再結(jié)合第二步usearch和vsearch的primer位置信息設(shè)置適合過濾的參數(shù)膀值。
qiime demux summarize \
--i-data result/paired-end-demux.qza \
--o-visualization result/paired-end-demux-summary.qzv
Step2: DADA2算法相比常用的OTU算法,其計算的amplicon variant sequences(ASV)的feature會更好一些误辑,feature代替OTU是一種趨勢沧踏。在此之后,Usearch的開發(fā)者Robert C Edgar迅速開發(fā)了更好的unoise2算法巾钉,該算法已更新到unoise3翘狱,并放話unoise2比DADA2更準(zhǔn)確。
DADA2是R的一個軟件包砰苍,可以進(jìn)行過濾潦匈,去重,嵌合體過濾赚导,reads的拼接茬缩,可以修正擴增子的測序錯誤,確定更多的真實變異吼旧。擴增子測序本身就具有內(nèi)在的限制凰锡,但是聚類OTU的方式進(jìn)一步限制了它的發(fā)展。OTU不是物種圈暗,它們不應(yīng)該成為錯誤的一部分掂为,DADA2可以具有更高的分辨率
DADA(Divisive Amplicon Denoising Algorithm)含義為區(qū)分?jǐn)U增子降噪方程可以確定真實的變異在454測序擴增子數(shù)據(jù)輸出更少的假陽性。DADA2是DADA的擴展和增強可以應(yīng)用于Illumina測序數(shù)據(jù)
- 特點:DADA2最重要的優(yōu)勢是它用了更多的數(shù)據(jù)厂置。DADA2的錯誤模型包含了質(zhì)量信息菩掏,而其他的方法都在過濾低質(zhì)量之后把序列的質(zhì)量信息忽略。而且DADA2的錯誤模型也包括了定量的豐度昵济,而且該模型也計算了各種不同轉(zhuǎn)置的概率A->C智绸。而且DADA2以自身數(shù)據(jù)的錯誤模型為參數(shù),不用依賴于其他參數(shù)分布模型访忿。
DADA2算法:一種分列式算法- 原理:
- 1 首先將每個reads全部看作單獨的單元瞧栗,Sequence相同的reads被納入一個sequence,reads個數(shù)即成為該sequence的豐度(abundance)(其實就是去冗余的過程)
- 2 計算每個sequence豐度的p-value海铆。當(dāng)最小的p-value低于設(shè)定的閾值時迹恐, 將產(chǎn)生一個新的partition。每一個sequence將會被歸入最可能生成該sequence的partition卧斟。
- 3 依次類推殴边,完成分割歸并憎茂。
# DADA2 denosie
qiime dada2 denoise-paired \
--i-demultiplexed-seqs result/paired-end-demux.qza \
--p-trim-left-f 23 \
--p-trim-left-r 19 \
--p-trunc-len-f 0 \
--p-trunc-len-r 0 \
--p-n-threads 20 \
--o-table result/table.qza \
--o-representative-sequences result/rep-seqs.qza \
--o-denoising-stats result/stats.qza
# summary feature table
qiime feature-table summarize \
--i-table result/table.qza \
--o-visualization result/table.qzv \
--m-sample-metadata-file sample-metadata.tsv
Taxonomic annotation
step1: 通過比對已知分類學(xué)組成的參考數(shù)據(jù)庫的序列,可以獲知feature table的代表序列的物種注釋情況锤岸。在qiime2通呈#可以使用已經(jīng)搭建好的分類學(xué)分類器:silva132和Greengene 13_8等。
GreenGene數(shù)據(jù)庫比較明顯的問題就是屬種水平注釋低是偷,所以很多條目里拳氢,g和s下劃線后面都是空的,如果關(guān)注屬種水平的注釋蛋铆,則不建議使用該數(shù)據(jù)庫馋评。
結(jié)合相關(guān)專業(yè)人士的反饋意見,個人建議使用silva數(shù)據(jù)庫作為物種注釋的首選參考數(shù)據(jù)庫刺啦。
# downlaod silva classifier data
wget https://data.qiime2.org/2020.8/common/silva-138-99-nb-classifier.qza
# annotation
qiime feature-classifier classify-sklearn \
--i-classifier database/silva-138-99-nb-classifier.qza \
--i-reads result/rep-seqs.qza \
--o-classification result/taxonomy-dada2-sliva.qza \
--p-n-jobs 20 \
--verbose \
--output-dir result/
step2: 可通過將某些代表序列與擴增子數(shù)據(jù)庫在blast軟件下再進(jìn)行物種注釋留特,該結(jié)果與qiime2提供的分類學(xué)分類器結(jié)果比較,從而可以評估分類學(xué)分類器的性能玛瘸,這適合在構(gòu)造新的分類學(xué)分類器時候使用磕秤。
# extract the validated sequences by qiime2 view network site
qiime feature-table tabulate-seqs \
--i-data result/rep-seqs.qza \
--o-visualization result/rep-seqs.qzv
Filter the unsuitable ASV
step1: remove low occurrence ASVs
根據(jù)table的結(jié)果設(shè)置過濾threshold,閾值有frequency和samples捧韵,即ASV在所有樣本的總reads和出現(xiàn)在樣本數(shù)目。計算平均采樣深度(對所有ASV的count加和并求平均值)汉操,設(shè)置采樣閾值后再乘以平均采樣深度即獲得frequency閾值再来,另外也可以設(shè)置ASV出現(xiàn)在多少樣本內(nèi)。
qiime feature-table filter-features \
--i-table result/table.qza \
--p-min-frequency 10 \
--p-min-samples 1 \
--o-filtered-table result/table_filter_low_freq.qza
step2: remove contamination and mitochondria, chloroplast sequence.
16s擴增子常見污染序列是來自于線粒體和葉綠體等16s序列磷瘤,另外也存在一些未注釋的序列芒篷,均需要去除。
qiime taxa filter-table \
--i-table result/table_filter_low_freq.qza \
--i-taxonomy result/taxonomy-dada2-sliva.qza \
--p-exclude mitochondria,chloroplast \
--o-filtered-table result/table_filter_low_freq_contam.qza
step3: drop the low depth samples:
經(jīng)過上述處理后采缚,某些樣本含有較少的ASV總量针炉,因此可以將其剔除。通常使用的threshold的范圍是1,000 - 4,000 reads扳抽。
# summarise all the ASV counts in each sample
qiime feature-table summarize \
--i-table result/table_filter_low_freq_contam.qza \
--o-visualization result/table_filter_low_freq_contam_summary.qzv
# remove samples
qiime feature-table filter-samples \
--i-table result/table_filter_low_freq_contam.qza \
--p-min-frequency 4000 \
--o-filtered-table result/final_table.qza
# representative sequence
qiime feature-table filter-seqs \
--i-data result/rep-seqs.qza \
--i-table result/final_table.qza \
--o-filtered-data result/final_rep_seqs.qza
# reannotate
qiime feature-classifier classify-sklearn \
--i-classifier database/silva-138-99-nb-classifier.qza \
--i-reads result/final_rep_seqs.qza \
--o-classification result/final_taxonomy_sliva.qza \
--p-n-jobs 20 \
--verbose \
--output-dir result/
# core features
qiime feature-table core-features \
--i-table result/final_table.qza \
--p-min-fraction 0.6 \
--p-max-fraction 1 \
--p-steps 11 \
--o-visualization result/final_table_cores.qzv \
--output-dir result
Downstream analysis
Constructing phylogenetic tree and diversity analysis
step1: 系統(tǒng)發(fā)育樹能夠服務(wù)于后續(xù)多樣性分析
qiime phylogeny align-to-tree-mafft-fasttree \
--i-sequences result/final_rep_seqs.qza \
--o-alignment result/final_rep_seqs_aligned.qza \
--o-masked-alignment result/final_rep_seqs_masked.qza \
--p-n-threads 20 \
--o-tree result/unrooted-tree.qza \
--o-rooted-tree result/rooted-tree.qza
step2: rarefication curve:
稀疏曲線可以了解測序深度與ASV的關(guān)系
qiime diversity alpha-rarefaction \
--i-table result/final_table.qza \
--i-phylogeny result/rooted-tree.qza \
--p-max-depth 60000 \
--m-metadata-file sample-metadata.tsv \
--o-visualization result/p-max-depth-60000-alpha-rarefaction.qzv
step3: diversity analysis
根據(jù)ASV的最小測序深度設(shè)置sampling參數(shù)
# all diversity index and distance
qiime diversity core-metrics-phylogenetic \
--i-phylogeny result/rooted-tree.qza \
--i-table result/final_table.qza \
--p-sampling-depth 60000 \
--m-metadata-file sample-metadata.tsv \
--output-dir result/sample-depth-60000-core-metrics-results
step4: faith_pd diversity parameters
# example for faith_pd_vector of group analysis
qiime diversity alpha-group-significance \
--i-alpha-diversity result/sample-depth-60000-core-metrics-results/faith_pd_vector.qza \
--m-metadata-file sample-metadata.tsv \
--o-visualization result/sample-depth-60000-core-metrics-results/faith-pd-group-significance.qzv
# example for alpha diversity of group analysis
qiime diversity alpha-group-significance \
--i-alpha-diversity result/sample-depth-60000-core-metrics-results/shannon_vector.qza \
--m-metadata-file sample-metadata.tsv \
--o-visualization result/shannon_compare_groups.qzv
# beta diversity
qiime diversity beta-group-significance \
--i-distance-matrix result/sample-depth-60000-core-metrics-results/unweighted_unifrac_distance_matrix.qza \
--m-metadata-file sample-metadata.tsv \
--m-metadata-column Treatment \
--p-pairwise false \
--p-permutations 999 \
--o-visualization result/unweighted-unifrac-subject-significance.qzv
# three dimensions to show beta diversity
qiime emperor plot \
--i-pcoa result/sample-depth-60000-core-metrics-results/unweighted_unifrac_pcoa_results.qza \
--m-metadata-file sample-metadata.tsv \
--p-custom-axes Treatment \
--o-visualization result/unweighted-unifrac-emperor-height.qzv
visualizing taxonomic composition
qiime taxa barplot \
--i-table result/final_table.qza \
--i-taxonomy result/final_taxonomy_sliva.qza \
--m-metadata-file sample-metadata.tsv \
--o-visualization result/final_taxa_barplots_sliva.qzv
Analysis of composition of microbiomes (ANCOM)
ANCOM(可以了解下sparse compositional correlation (SparCC) to analyze correlation networks among taxa)可用于比較微生物在組間差異的分析方法篡帕, 結(jié)果與LEfse類似。該方法基于成分對數(shù)比的方法贸呢,即先對count數(shù)據(jù)進(jìn)行對數(shù)轉(zhuǎn)換镰烧,再通過簡單的秩和檢驗(stats包內(nèi)的aov, friedman.test, lme等函數(shù))進(jìn)行比較,最后計算統(tǒng)計量w楞陷。ANCOM的結(jié)果用W值來衡量組間差異顯著性怔鳖。W值越高代表該物種在組間的差異顯著性越高。ANCOM的R代碼(推薦9潭辍=嶂础度陆!)。
# add pseudocount for log transform
qiime composition add-pseudocount \
--i-table result/final_table.qza \
--p-pseudocount 1 \
--o-composition-table result/final_table_pseudocount.qza
# ANCOM
qiime composition ancom \
--i-table result/final_table_pseudocount.qza \
--m-metadata-file sample-metadata.tsv \
--m-metadata-column Treatment \
--output-dir result/ancom_output
export qza into other format type data
qza數(shù)據(jù)文件
QIIME2為了使分析流程標(biāo)準(zhǔn)化献幔,分析過程可重復(fù)懂傀,制定了統(tǒng)一的分析過程文件格式
.qza
;qza文件類似于一個封閉的系統(tǒng)斜姥,里面包括原始數(shù)據(jù)鸿竖、分析的過程和結(jié)果;這樣保證了文件格式的標(biāo)準(zhǔn)铸敏,同時可以追溯每一步的分析缚忧,以及圖表繪制參數(shù)。這一方案為實現(xiàn)將來可重復(fù)的分析提供了基礎(chǔ)杈笔。
# representative sequences
qiime tools export \
--input-path result/final_rep_seqs.qza \
--output-path final_result
# features table
qiime tools export \
--input-path result/final_table.qza \
--output-path final_result
biom normalize-table \
-i final_result/feature-table.biom \
-r \
-o final_result/feature-table-norm.biom
biom convert \
-i final_result/feature-table-norm.biom \
-o final_result/feature-table-norm.tsv \
--to-tsv \
--header-key taxonomy
LEfse
LEfse是LDA Effect Size分析闪水,其本質(zhì)是一類判別分析。其結(jié)果一般配合進(jìn)化分支圖使用蒙具,也即是展示差異物種在進(jìn)化上的關(guān)系球榆。推薦使用yintools的LEfse的R腳本。remotes::install_github("ying14/yingtools2")
原理:首先使用non-parametric factorial Kruskal-Wallis (KW) sum-rank test(非參數(shù)因子克魯斯卡爾—沃利斯和秩驗檢)檢測具有顯著豐度差異特征禁筏,并找到與豐度有顯著性差異的類群持钉。最后,LEfSe采用線性判別分析(LDA)來估算每個組分(物種)豐度對差異效果影響的大小篱昔。
進(jìn)化分支圖:由內(nèi)至外輻射的圓圈代表了由門至屬(或種)的分類級別每强。在不同分類級別上的每一個小圓圈代表該水平下的一個分類,小圓圈直徑大小與相對豐度大小呈正比州刽。著色原則:無顯著差異的物種統(tǒng)一著色為黃色空执,差異物種Biomarker跟隨組進(jìn)行著色,紅色節(jié)點表示在紅色組別中起到重要作用的微生物類群穗椅,綠色節(jié)點表示在綠色組別中起到重要作用的微生物類群辨绊,若圖中某一組缺失,則表明此組中并無差異顯著的物種匹表,故此組缺失门坷。圖中英文字母表示的物種名稱在右側(cè)圖例中進(jìn)行展示。
step1: install lefse through conda
conda create -n lefse -c biobakery lefse -y
conda activate lefse
which format_input.py
step2: collapse the table.gza to the L6 level
qiime taxa collapse \
--i-table result/final_table.qza \
--o-collapsed-table collapse/collapse.table.qza \
--p-level 6 \
--i-taxonomy result/final_taxonomy_sliva.qza
step3: calculate relative-frequency for the collapsed table (relative abundance instead of counts)
qiime feature-table relative-frequency \
--i-table collapse/collapse.table.qza \
--o-relative-frequency-table collapse/collapse.frequency.table.qza \
--output-dir collapse/
step4: export biom file
qiime tools export \
--input-path collapse/collapse.frequency.table.qza \
--output-path collapse/
step5: convert biom to text file
biom convert \
-i collapse/feature-table.biom \
-o collapse/collapse.frequency.table.tsv \
--header-key "taxonomy" \
--to-tsv
step6: filter tax
sed 's/;/\|/g' collapse/collapse.frequency.table.tsv | \
awk '{split($1, a, "|");if( a[6] != "__"){print $0}}' | \
#sed 's/d\_\_Bacteria|//g' | \
grep -vE "g__uncultured|d__Archaea|p__WPS-2|p__SAR324_clade|Constructed" | \
sed 's/#OTU ID/Group/g;s/taxonomy//g' > collapse/collapse.frequency.table.lefse.tsv
step7: run lefse
conda activate lefse
# convert text file into lefse.input file
format_input.py \
collapse/collapse.frequency.table.lefse.tsv \
result/collapse.frequency.table.lefse.in \
-c 1 \
-m f \
-o 100000
# run lefse
run_lefse.py \
result/collapse.frequency.table.lefse.in \
result/collapse.frequency.table.lefse.res
# select significant result Lefse
grep -E "HTN|Normal" \
result/collapse.frequency.table.lefse.res \
> result/collapse.frequency.table.lefse_signif.res
# plot lda
plot_res.py \
result/collapse.frequency.table.lefse_signif.res \
result/lefse_final_lda.pdf \
--format pdf \
--autoscale 0
# plot cladogram
plot_cladogram.py \
result/collapse.frequency.table.lefse_signif.res \
result/lefse_total_clado.pdf \
--format pdf
Functional prediction: picrust2
Picrust是Phylogenetic Investigationof Communities by Reconstruction of Unobserved States的簡稱桑孩,是一款基于16s rRNA基因序列預(yù)測微生物群落功能的軟件拜鹤。
其原理:
(1)基因內(nèi)容預(yù)測(gene content inference)。該步先對Greengenes數(shù)據(jù)庫的“closed reference”序列劃分OTU后構(gòu)建進(jìn)化樹流椒,通過祖先狀態(tài)重構(gòu)(Ancestralstate reconstruction)算法并結(jié)合IMG/M數(shù)據(jù)庫敏簿,預(yù)測出樹中未進(jìn)行全基因組測序OTU的基因組信息。
(2)宏基因組預(yù)測(metagenome inference)。將16SrDNA測序結(jié)果與Greengenes數(shù)據(jù)庫進(jìn)行比對惯裕,挑選出與“closed reference”數(shù)據(jù)庫相似性高的(默認(rèn)為≥97%)OTU温数;根據(jù)OTU對應(yīng)基因組中16SrDNA的拷貝數(shù)信息,將每個OTU對應(yīng)序列數(shù)除以其16S拷貝數(shù)來進(jìn)行標(biāo)準(zhǔn)化蜻势;最后撑刺,將標(biāo)準(zhǔn)化的數(shù)據(jù)乘以其對應(yīng)的基因組中基因含量從而實現(xiàn)宏基因組預(yù)測的目的。獲得的預(yù)測結(jié)果可以通過KEGG Orthology握玛、COGs或Pfams等對基因家族進(jìn)行分類够傍。
qiime2-2020.8版本暫時無法安裝q2-picrust插件,因此使用picurst2軟件做微生物功能預(yù)測分析挠铲。
# install picrust2
conda create -n picrust2 -c bioconda -c conda-forge picrust2=2.3.0_b -y
# export representative sequences
conda activate qiime2-2020.8
qiime tools export --input-path result/final_rep_seqs.qza --output-path ./
conda deactivate
# run picrust2
conda activate picrust2
picrust2_pipeline.py -s dna-sequences.fasta -i feature-table.biom -o picrust2_out_pipeline -p 30
conda deactivate
The key output files are:
EC_metagenome_out
- Folder containing unstratified EC number metagenome predictions (pred_metagenome_unstrat.tsv.gz
), sequence table normalized by predicted 16S copy number abundances (seqtab_norm.tsv.gz
), and the per-sample NSTI values weighted by the abundance of each ASV (weighted_nsti.tsv.gz
).KO_metagenome_out
- AsEC_metagenome_out
above, but for KO metagenomes.pathways_out
- Folder containing predicted pathway abundances and coverages per-sample, based on predicted EC number abundances.