4. State-Space Planning(2)

Abstraction heuristics --------is admissible (and consistent)

Simplify the problem by ignoring parts of it.

  1. Drop preconditions from actions.
  2. Consider only a subset of predicates/propositions.
  3. Count objects with a given property, ignoring the identity of objects.(eg. count clear boxes)
  4. Ignore so much that the abstract problem is small enough to be solved by uninformed search.
  5. Use memory to avoid repeated searches (pattern databases).

Formal definition
ProblemP′ = (S′,A′,γ′,s′0,SG′ ,c′)isanabstractionofP = (S,A,γ,s0,SG,c) if there exists an abstraction mapping φ : S → S′, then

  1. φ preserves the initial state: φ(s0) = s′0
  2. φ preserves goal states: ifs∈SG thenφ(s)∈SG′
  3. φ preserves transitions:
    if γ(s, a) = t then ?a′ ∈ A′ γ′(φ(s), a′) = φ(t) with c′(a′) ≤ c(a)

The abstraction heuristic hφ(s, g) induced by φ is given by the the cost of the optimal path from φ(s) to φ(g) in P′

Landmark heuristics

Proposition l is a landmark for problem P iff all plans for P make l true.

Sufficient condition for proposition l to be a landmark for problem P: the delete relaxation P+ is not solvable when l is removed from the add-list of all actions.(一個(gè)命題是 landmark 則,如果命題 l 不屬于actions list ,那么p+ 不能夠被解決)

啟發(fā)之定義:counts the number of yet unachieved landmarks. generalisation of the number of unachieved goals heuristic used in the LAMA planner [Richter, AAAI 2008]

The current best heuristics are landmark heuristics variants

P+ be the relaxed problem obtained by ignoring the negative effects (delete list) of every action

Progression planning(Forward-Search)

Forward-Search feature

  1. can be used in conjunction with any search strategy to implement choose, breadth-first search,depth-first search, iterative- deepening, greedy search, A*.
  2. Forward-Search is sound: any plan returned is guaranteed to be a solution to the problem.
  3. Forward-Search is complete: provided the underlying search strategy is complete, it will always return a solution to the problem if there is one.

Forward-Search problem
it can have a large branching factor, It wastes a lot of time trying irrelevant actions.

solution:

  1. domain-specific: search control rules, heuristics.
  2. domain-independent: heuristics extracted from the STRIPS .
  3. problem description backward search: from the goal to the initial state.

Regression planning (backward search)

Comparation
For forward search, we started at the initial state and computed state transitions, leading to a new state γ(s, a)

For backward search, we start at the goal and compute inverse state transitions a.k.a regression, leading to a new goal γ?1(g, a)

不同之處:

  1. Regression planning is in the space of goals. Goals don't make the closed world assumption, so you don't know the value of the propositions that are not mentioned in the goal.
    The way to forbid loops is to check that no ancestor is labelled by a goal (set of propositions) that is a susbset of the goal labelling the current node.

  2. Forward search the nodes are labelled by states: everything mentioned in a state is true and the rest is false.
    The way to forbid loops is just to check whether the state labelling of your ancestor is the same state labelling the current node

使用說明:當(dāng)start點(diǎn)leaf node多锣夹,那么就用backward search杨帽,反之炒瘸,就用forward search。In both of them need to "forbid" loops in conjunction with DFS


the way to form last state: If a is relevant for g then: γ?1(g, a) = (g \ eff+(a)) ∪ pre(a)

An action a is relevant for goal g if:
– it makes at least one of g’s propositions true: g ∩ eff+(a) ?= { }
– it does not make any of g’s proposition false: g ∩ eff?(a) = { }

Example
– g = {on(D, B), clear(D), ontable(A), clear(A)}

– a = putdown(R1, A)
operator putdown(r, x)
precondition {holding(R1,A)}
effect {ontable(A), clear(A), handempty(R1), ?holding(R1, A)}

– γ?1(g, a) = {on(D, B), clear(D), holding(R1, A)}

性質(zhì):
Backward-Search is sound: any plan returned is guaranteed to be a solution to the problem.

Backward-Search is complete: provided the underlying search strategy is complete, it will always return a solution to the problem if there is one.

Regression planning (backward search) 改進(jìn)——Lifting

We can substancially reduce the branching factor if we only partially in- stanciate the operators.

For instance, in the Blocks World, we may not need to distinguish between using robot hand R1 and robot hand R2. Just any hand will do.

After the regression, we obtain
g←{on(D,y),clear(D),handempty(r),on(A,B),clear(A),handempty(r′),y?=B,r?=r′}
π←?unstack(r′,A,B),unstack(r,D,y),putdown(r′,A),stack(r,D,E)? withy?=B,r?=r′

while,
initial state: s = {on(D, E), clear(D), handempty(R1), on(A, B), clear(A), handempty(R2), . . .}
therefore, s satisfies g:σ←{r←R1,r′ ←R2,y←E}

result plan:
π ← ?unstack(R2, A, B), unstack(R1, D, E), putdown(R2, A), stack(R1, D, B)?

總結(jié)

State-space planning produces totally-ordered plans by a forward or backward search in the state space. This requires domain-independent heuristics or domain-specific control rules to be efficient

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子恃鞋,更是在濱河造成了極大的恐慌,老刑警劉巖亦歉,帶你破解...
    沈念sama閱讀 216,997評(píng)論 6 502
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件恤浪,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡肴楷,警方通過查閱死者的電腦和手機(jī)水由,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,603評(píng)論 3 392
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來赛蔫,“玉大人砂客,你說我怎么就攤上這事直秆。” “怎么了鞭盟?”我有些...
    開封第一講書人閱讀 163,359評(píng)論 0 353
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)瑰剃。 經(jīng)常有香客問我齿诉,道長(zhǎng),這世上最難降的妖魔是什么晌姚? 我笑而不...
    開封第一講書人閱讀 58,309評(píng)論 1 292
  • 正文 為了忘掉前任粤剧,我火速辦了婚禮,結(jié)果婚禮上挥唠,老公的妹妹穿的比我還像新娘抵恋。我一直安慰自己,他們只是感情好宝磨,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,346評(píng)論 6 390
  • 文/花漫 我一把揭開白布弧关。 她就那樣靜靜地躺著,像睡著了一般唤锉。 火紅的嫁衣襯著肌膚如雪世囊。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,258評(píng)論 1 300
  • 那天窿祥,我揣著相機(jī)與錄音株憾,去河邊找鬼。 笑死晒衩,一個(gè)胖子當(dāng)著我的面吹牛嗤瞎,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播听系,決...
    沈念sama閱讀 40,122評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼贝奇,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了跛锌?” 一聲冷哼從身側(cè)響起弃秆,我...
    開封第一講書人閱讀 38,970評(píng)論 0 275
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎髓帽,沒想到半個(gè)月后菠赚,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,403評(píng)論 1 313
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡郑藏,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,596評(píng)論 3 334
  • 正文 我和宋清朗相戀三年衡查,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片必盖。...
    茶點(diǎn)故事閱讀 39,769評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡拌牲,死狀恐怖俱饿,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情塌忽,我是刑警寧澤拍埠,帶...
    沈念sama閱讀 35,464評(píng)論 5 344
  • 正文 年R本政府宣布,位于F島的核電站土居,受9級(jí)特大地震影響枣购,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜擦耀,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,075評(píng)論 3 327
  • 文/蒙蒙 一棉圈、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧眷蜓,春花似錦分瘾、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,705評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至汽纤,卻和暖如春氏捞,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背冒版。 一陣腳步聲響...
    開封第一講書人閱讀 32,848評(píng)論 1 269
  • 我被黑心中介騙來泰國打工液茎, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人辞嗡。 一個(gè)月前我還...
    沈念sama閱讀 47,831評(píng)論 2 370
  • 正文 我出身青樓捆等,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國和親续室。 傳聞我的和親對(duì)象是個(gè)殘疾皇子栋烤,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,678評(píng)論 2 354

推薦閱讀更多精彩內(nèi)容

  • **2014真題Directions:Read the following text. Choose the be...
    又是夜半驚坐起閱讀 9,489評(píng)論 0 23
  • 解決方案 使用 @HTTP 注解: 其中 path 指定 Host ,即請(qǐng)求的 url 挺狰,method 指定請(qǐng)求類...
    學(xué)點(diǎn)東西吧6閱讀 1,551評(píng)論 0 0
  • 一明郭、買房 1.一個(gè)哥們這兩天興沖沖跟我討論在哪里買房,說實(shí)話自己現(xiàn)在討論這個(gè)問題丰泊,心都是碎的薯定,捧出來跟餃子餡似的。...
    風(fēng)雅狂月閱讀 243評(píng)論 0 0
  • 文/溺巢 夕陽被烏云撕裂成散落的暈紅 沿著電纜線飛速向前滑行 與它溫度相似的記憶 隨著列車行進(jìn)的軌跡慢慢鋪陳開來 ...
    溺巢閱讀 323評(píng)論 0 0