斯坦福大學(xué)TensorFlow課程筆記(cs20si):#1

Tensor定義

tensor張量可以理解為n維數(shù)組:

  • 0維張量是一個(gè)數(shù)(Scalar/number),
  • 1維張量是向量(Vector),
  • 2維張量是矩陣(Martrix),
  • 以此類(lèi)推...

基礎(chǔ)運(yùn)算

import tensorflow as tf
a=tf.add(3,5)
print(a)
Tensor("Add:0", shape=(), dtype=int32)

TF的加法方法树叽,但是通常的賦值并不是正常運(yùn)行加法探孝。
需要將被賦值的變量a放入session運(yùn)行才能看到運(yùn)算結(jié)果。

a=tf.add(3,5)
sess=tf.Session()
print(sess.run(a))
sess.close()
8

將運(yùn)算結(jié)果存入sess稍后再用的寫(xiě)法

a=tf.add(3,5)
with tf.Session() as sess:
    print(sess.run(a))
8

tf.Session()封裝了一個(gè)執(zhí)行運(yùn)算的環(huán)境指攒,用tensor對(duì)象內(nèi)的賦值進(jìn)行運(yùn)算

混合運(yùn)算

x=2
y=3
op1 =tf.add(x,y)
op2=tf.multiply(x,y)
op3=tf.pow(op2,op1)
with tf.Session() as sess:
    op3=sess.run(op3)
    print(op3)
7776

Subgraphs

x=2
y=3
add_op=tf.add(x,y)
mul_op=tf.multiply(x,y)
useless=tf.multiply(x,add_op)
pow_op=tf.pow(add_op,mul_op)
with tf.Session() as sess:
    z=sess.run(pow_op)
    print(z)
15625

由于求Z值并不需要計(jì)算useless部分,所以session并沒(méi)有計(jì)算它

x=2
y=3
add_op=tf.add(x,y)
mul_op=tf.multiply(x,y)
useless=tf.multiply(x,add_op)
pow_op=tf.pow(add_op,mul_op)
with tf.Session() as sess:
    z,not_useless=sess.run([pow_op,useless])
    print(z)
    print(not_useless)
15625
10

同時(shí)進(jìn)行兩個(gè)計(jì)算

Graph

g=tf.Graph()
with g.as_default():
    x=tf.add(3,5)
    
sess=tf.Session(graph=g)
with tf.Session() as sess: #此處兩行的打包方式已經(jīng)過(guò)時(shí),如果報(bào)錯(cuò)需要改成下面的格式
    sess.run(g)

---------------------------------------------------------------------------

TypeError                                 Traceback (most recent call last)

~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn)
    270         self._unique_fetches.append(ops.get_default_graph().as_graph_element(
--> 271             fetch, allow_tensor=True, allow_operation=True))
    272       except TypeError as e:


~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py in as_graph_element(self, obj, allow_tensor, allow_operation)
   3034     with self._lock:
-> 3035       return self._as_graph_element_locked(obj, allow_tensor, allow_operation)
   3036 


~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\ops.py in _as_graph_element_locked(self, obj, allow_tensor, allow_operation)
   3123       raise TypeError("Can not convert a %s into a %s." % (type(obj).__name__,
-> 3124                                                            types_str))
   3125 


TypeError: Can not convert a Graph into a Tensor or Operation.


During handling of the above exception, another exception occurred:


TypeError                                 Traceback (most recent call last)

<ipython-input-20-5c5906e5d961> in <module>()
      5 sess=tf.Session(graph=g)
      6 with tf.Session() as sess:
----> 7     sess.run(g)


~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
    887     try:
    888       result = self._run(None, fetches, feed_dict, options_ptr,
--> 889                          run_metadata_ptr)
    890       if run_metadata:
    891         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)


~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
   1103     # Create a fetch handler to take care of the structure of fetches.
   1104     fetch_handler = _FetchHandler(
-> 1105         self._graph, fetches, feed_dict_tensor, feed_handles=feed_handles)
   1106 
   1107     # Run request and get response.


~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in __init__(self, graph, fetches, feeds, feed_handles)
    412     """
    413     with graph.as_default():
--> 414       self._fetch_mapper = _FetchMapper.for_fetch(fetches)
    415     self._fetches = []
    416     self._targets = []


~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in for_fetch(fetch)
    240         if isinstance(fetch, tensor_type):
    241           fetches, contraction_fn = fetch_fn(fetch)
--> 242           return _ElementFetchMapper(fetches, contraction_fn)
    243     # Did not find anything.
    244     raise TypeError('Fetch argument %r has invalid type %r' %


~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in __init__(self, fetches, contraction_fn)
    273         raise TypeError('Fetch argument %r has invalid type %r, '
    274                         'must be a string or Tensor. (%s)'
--> 275                         % (fetch, type(fetch), str(e)))
    276       except ValueError as e:
    277         raise ValueError('Fetch argument %r cannot be interpreted as a '


TypeError: Fetch argument <tensorflow.python.framework.ops.Graph object at 0x0000018E70371A20> has invalid type <class 'tensorflow.python.framework.ops.Graph'>, must be a string or Tensor. (Can not convert a Graph into a Tensor or Operation.)

教程的例子有報(bào)錯(cuò),需要改成下面的格式

g=tf.Graph()
with g.as_default():
    x=tf.add(3,5)
    

with tf.Session(graph=g) as sess: #將上面的兩行改成一行
    sess.run(x)                   #不能直接運(yùn)行g(shù)raph

g=tf.Graph()
with g.as_default():
a=3
b=5
x=tf.add(a,b)
sess = tf.Session(graph=g)
sess.close()

向graph內(nèi)添加加法運(yùn)算锭碳,并且設(shè)為默認(rèn)graph

g1=tf.get_default_graph()
g2=tf.graph()
#將運(yùn)算加入到默認(rèn)graph
with g1.as_default():
    a=tf.Constant(3)       #不會(huì)報(bào)錯(cuò),但推薦添加到自己創(chuàng)建的graph里
    
#將運(yùn)算加入到用戶創(chuàng)建的graph
with g2.as_default():
    b=tf.Constant(5)

建議不要修改默認(rèn)graph

** Graph 的優(yōu)點(diǎn) **

  • 節(jié)省運(yùn)算資源勿璃,只計(jì)算需要的部分
  • 將計(jì)算分解為更小的部分
  • 讓分布式運(yùn)算更方便擒抛,向多個(gè)CPU推汽,GPU或其它設(shè)備分配任務(wù)
  • 適合那些使用directed graph的機(jī)器學(xué)習(xí)算法

Graph 與 Session 的區(qū)別

  • Graph定義運(yùn)算,但不計(jì)算任何東西歧沪,不保存任何數(shù)值歹撒,只存儲(chǔ)你在各個(gè)節(jié)點(diǎn)定義的運(yùn)算。
  • Session可運(yùn)行Graph或一部分Graph诊胞,它負(fù)責(zé)在一臺(tái)或多臺(tái)機(jī)器上分配資源暖夭,保存實(shí)際數(shù)值,中間結(jié)果和變量撵孤。

下面通過(guò)以下例子具體闡明二者的區(qū)別:

graph=tf.Graph()
with graph.as_default():#每次TF都會(huì)生產(chǎn)默認(rèn)graph,所以前兩行其實(shí)并不需要
    variable=tf.Variable(42,name='foo')
    initialize=tf.global_variables_initializer()
    assign=variable.assign(13)

創(chuàng)建變量迈着,初始化值42,之后賦值13

graph=tf.Graph()
with graph.as_default():#每次TF都會(huì)生產(chǎn)默認(rèn)graph,所以前兩行其實(shí)并不需要
    variable=tf.Variable(42,name='foo')
    initialize=tf.global_variables_initializer()
    assign=variable.assign(13)

with tf.Session(graph=graph) as sess:  
    sess.run(initialize)      #記得將計(jì)算步驟在此處列出來(lái)
    sess.run(assign)
    print(sess.run(variable))
13

定義的計(jì)算數(shù)量達(dá)到三個(gè)時(shí)就要使用graph邪码。但是variable每次運(yùn)算都要在session內(nèi)run一遍裕菠,如果跳過(guò)此步驟,就無(wú)法獲取運(yùn)算后變量數(shù)值霞扬。(也就相當(dāng)于沒(méi)計(jì)算過(guò))

graph=tf.Graph()
with graph.as_default():#每次TF都會(huì)生產(chǎn)默認(rèn)graph,所以前兩行其實(shí)并不需要
    variable=tf.Variable(42,name='foo')
    initialize=tf.global_variables_initializer()
    assign=variable.assign(13)

with tf.Session(graph=graph) as sess:
    print(sess.run(variable))    #未列出計(jì)算步驟所以報(bào)錯(cuò)
---------------------------------------------------------------------------

FailedPreconditionError                   Traceback (most recent call last)

~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
   1322     try:
-> 1323       return fn(*args)
   1324     except errors.OpError as e:


~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _run_fn(session, feed_dict, fetch_list, target_list, options, run_metadata)
   1301                                    feed_dict, fetch_list, target_list,
-> 1302                                    status, run_metadata)
   1303 


~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\framework\errors_impl.py in __exit__(self, type_arg, value_arg, traceback_arg)
    472             compat.as_text(c_api.TF_Message(self.status.status)),
--> 473             c_api.TF_GetCode(self.status.status))
    474     # Delete the underlying status object from memory otherwise it stays alive


FailedPreconditionError: Attempting to use uninitialized value foo
     [[Node: _retval_foo_0_0 = _Retval[T=DT_INT32, index=0, _device="/job:localhost/replica:0/task:0/device:CPU:0"](foo)]]


During handling of the above exception, another exception occurred:


FailedPreconditionError                   Traceback (most recent call last)

<ipython-input-25-cb7c04ce65af> in <module>()
      6 
      7 with tf.Session(graph=graph) as sess:
----> 8     print(sess.run(variable))


~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in run(self, fetches, feed_dict, options, run_metadata)
    887     try:
    888       result = self._run(None, fetches, feed_dict, options_ptr,
--> 889                          run_metadata_ptr)
    890       if run_metadata:
    891         proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)


~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
   1118     if final_fetches or final_targets or (handle and feed_dict_tensor):
   1119       results = self._do_run(handle, final_targets, final_fetches,
-> 1120                              feed_dict_tensor, options, run_metadata)
   1121     else:
   1122       results = []


~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
   1315     if handle is None:
   1316       return self._do_call(_run_fn, self._session, feeds, fetches, targets,
-> 1317                            options, run_metadata)
   1318     else:
   1319       return self._do_call(_prun_fn, self._session, handle, feeds, fetches)


~\Anaconda3\envs\tensorflow\lib\site-packages\tensorflow\python\client\session.py in _do_call(self, fn, *args)
   1334         except KeyError:
   1335           pass
-> 1336       raise type(e)(node_def, op, message)
   1337 
   1338   def _extend_graph(self):


FailedPreconditionError: Attempting to use uninitialized value foo
     [[Node: _retval_foo_0_0 = _Retval[T=DT_INT32, index=0, _device="/job:localhost/replica:0/task:0/device:CPU:0"](foo)]]
graph=tf.Graph()
with graph.as_default():#每次TF都會(huì)生產(chǎn)默認(rèn)graph,所以前兩行其實(shí)并不需要
    variable=tf.Variable(42,name='foo')
    initialize=tf.global_variables_initializer()
    assign=variable.assign(13)

with tf.Session(graph=graph) as sess:  
    sess.run(initialize)      #計(jì)算步驟糕韧,列到第幾步就計(jì)算到第幾步
    print(sess.run(variable))
42
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末枫振,一起剝皮案震驚了整個(gè)濱河市喻圃,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌粪滤,老刑警劉巖斧拍,帶你破解...
    沈念sama閱讀 216,919評(píng)論 6 502
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異杖小,居然都是意外死亡肆汹,警方通過(guò)查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,567評(píng)論 3 392
  • 文/潘曉璐 我一進(jìn)店門(mén)予权,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)昂勉,“玉大人,你說(shuō)我怎么就攤上這事扫腺「谡眨” “怎么了?”我有些...
    開(kāi)封第一講書(shū)人閱讀 163,316評(píng)論 0 353
  • 文/不壞的土叔 我叫張陵笆环,是天一觀的道長(zhǎng)攒至。 經(jīng)常有香客問(wèn)我,道長(zhǎng)躁劣,這世上最難降的妖魔是什么迫吐? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 58,294評(píng)論 1 292
  • 正文 為了忘掉前任,我火速辦了婚禮账忘,結(jié)果婚禮上志膀,老公的妹妹穿的比我還像新娘熙宇。我一直安慰自己,他們只是感情好梧却,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,318評(píng)論 6 390
  • 文/花漫 我一把揭開(kāi)白布奇颠。 她就那樣靜靜地躺著,像睡著了一般放航。 火紅的嫁衣襯著肌膚如雪烈拒。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 51,245評(píng)論 1 299
  • 那天广鳍,我揣著相機(jī)與錄音荆几,去河邊找鬼。 笑死赊时,一個(gè)胖子當(dāng)著我的面吹牛吨铸,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播祖秒,決...
    沈念sama閱讀 40,120評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼诞吱,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了竭缝?” 一聲冷哼從身側(cè)響起房维,我...
    開(kāi)封第一講書(shū)人閱讀 38,964評(píng)論 0 275
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎抬纸,沒(méi)想到半個(gè)月后咙俩,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,376評(píng)論 1 313
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡湿故,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,592評(píng)論 2 333
  • 正文 我和宋清朗相戀三年阿趁,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片坛猪。...
    茶點(diǎn)故事閱讀 39,764評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡脖阵,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出墅茉,到底是詐尸還是另有隱情命黔,我是刑警寧澤,帶...
    沈念sama閱讀 35,460評(píng)論 5 344
  • 正文 年R本政府宣布躁锁,位于F島的核電站纷铣,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏战转。R本人自食惡果不足惜搜立,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,070評(píng)論 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望槐秧。 院中可真熱鬧啄踊,春花似錦忧设、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 31,697評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至顿锰,卻和暖如春谨垃,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背硼控。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 32,846評(píng)論 1 269
  • 我被黑心中介騙來(lái)泰國(guó)打工刘陶, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人牢撼。 一個(gè)月前我還...
    沈念sama閱讀 47,819評(píng)論 2 370
  • 正文 我出身青樓匙隔,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親熏版。 傳聞我的和親對(duì)象是個(gè)殘疾皇子纷责,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,665評(píng)論 2 354

推薦閱讀更多精彩內(nèi)容

  • TF API數(shù)學(xué)計(jì)算tf...... :math(1)剛開(kāi)始先給一個(gè)運(yùn)行實(shí)例。tf是基于圖(Graph)的計(jì)算系統(tǒng)...
    MachineLP閱讀 3,461評(píng)論 0 1
  • 這幾天因?yàn)閹е謰屧卺t(yī)院住院撼短,作為一名還算理性的患者家屬再膳,見(jiàn)識(shí)了醫(yī)患之間的爭(zhēng)吵,也看到病人連續(xù)送錦旗對(duì)醫(yī)生表示感謝...
    tiaoyuema閱讀 148評(píng)論 0 1
  • 我這個(gè)人一向比別人慢半拍阔加,當(dāng)《臥虎藏龍》火的燃燒了整個(gè)世界的時(shí)候饵史,我卻很懷疑它有可看的價(jià)值满钟。原因是我一直覺(jué)得武俠一...
    孟婆的碗不空閱讀 1,439評(píng)論 6 20
  • 翠柳堆煙春日短胜榔,蜂飛蝶舞滿花枝。 檐間燕子梁雙倚湃番,水上鴛鴦?wù)硬⒊凇?夢(mèng)遠(yuǎn)眉間山海晚夭织,愁生眼底綠波時(shí)。 非花非霧誰(shuí)來(lái)...
    眉間飛雪閱讀 279評(píng)論 9 10
  • 每一陣風(fēng)起 大地一片塵土飛揚(yáng) 江南的雨 灑不進(jìn)這干涸的天空 你就像是一朵睡蓮 雨后的彩虹能映出你的笑臉 江南的風(fēng) ...
    LeoRex閱讀 735評(píng)論 0 2