2022-10-28記錄我在做cellchat的時候遇到的Error Code

##1

cellchat <- computeNetSimilarity(cellchat, type = "structural")

cellchat <- netEmbedding(cellchat, type = "structural")

Error in runUMAP(Similarity, min_dist = min_dist, n_neighbors = n_neighbors, :

? Cannot find UMAP, please install through pip (e.g. pip install umap-learn or reticulate::py_install(packages = 'umap-learn')).

按照指示裝了umap-learn也還是同樣的報錯!

##

cellchat <- aggregateNet(cellchat)?

cellchat <- netAnalysis_computeCentrality(cellchat, slot.name = "netP")

Fortran runtime error: Insufficient number of elements in TARRAY.

Fortran runtime error: Insufficient number of elements in TARRAY.

Fortran runtime error: Insufficient number of elements in TARRAY.

Fortran runtime error: Insufficient number of elements in TARRAY.

Error in unserialize(node$con):

? MultisessionFuture (future_sapply-1) failed to receive results from cluster RichSOCKnode #1 (PID 1498926 on localhost ‘localhost’). The reason reported was ‘error reading from connection’. Post-mortem diagnostic: No process exists with this PID, i.e. the localhost worker is no longer alive. The total size of the 7 globals exported is 151.66 KiB. The three largest globals are ‘computeCentralityLocal’ (142.34 KiB of class ‘function’), ‘...future.FUN’ (5.59 KiB of class ‘function’) and ‘net’ (3.68 KiB of class ‘numeric’)

示例代碼復(fù)現(xiàn)

此部分參考知乎博主做的,鏈接為

CellChat細(xì)胞通訊分析(下)--實操代碼·多個數(shù)據(jù)集比較分析 - 知乎 (zhihu.com)

library(Seurat)

library(dplyr)

library(SeuratData)

library(patchwork)

library(ggplot2)

library(CellChat)

library(ggalluvial)

library(svglite)

options(stringsAsFactors = FALSE)

rm(list=ls())?

options(stringsAsFactors = F)?

cellchat.NL <- readRDS(url("https://ndownloader.figshare.com/files/25954199"))

cellchat.LS <- readRDS(url("https://ndownloader.figshare.com/files/25956518"))

cellchat.NL <- readRDS("/Users/jinsuoqin/Documents/CellChat/tutorial/cellchat_humanSkin_NL.rds")

cellchat.LS <- readRDS("/Users/jinsuoqin/Documents/CellChat/tutorial/cellchat_humanSkin_LS.rds")

object.list <- list(NL = cellchat.NL, LS = cellchat.LS)

cellchat <- mergeCellChat(object.list, add.names = names(object.list))


gg1 <- compareInteractions(cellchat, show.legend = F, group = c(1,2))

gg2 <- compareInteractions(cellchat, show.legend = F, group = c(1,2), measure = "weight")

gg1 + gg2


par(mfrow = c(1,2), xpd=TRUE)

netVisual_diffInteraction(cellchat, weight.scale = T)

netVisual_diffInteraction(cellchat, weight.scale = T, measure = "weight")


gg1 <- netVisual_heatmap(cellchat)


gg2 <- netVisual_heatmap(cellchat, measure = "weight")


gg1 + gg2


weight.max <- getMaxWeight(object.list, attribute = c("idents","count"))

par(mfrow = c(1,2), xpd=TRUE)

for (i in 1:length(object.list)) {

? netVisual_circle(object.list[[i]]@net$count, weight.scale = T, label.edge= F, edge.weight.max = weight.max[2], edge.width.max = 12, title.name = paste0("Number of interactions - ", names(object.list)[i]))

}


group.cellType <- c(rep("FIB", 4), rep("DC", 4), rep("TC", 4))

group.cellType <- factor(group.cellType, levels = c("FIB", "DC", "TC"))

object.list <- lapply(object.list, function(x) {mergeInteractions(x, group.cellType)})

cellchat <- mergeCellChat(object.list, add.names = names(object.list))


weight.max <- getMaxWeight(object.list, slot.name = c("idents", "net", "net"), attribute = c("idents","count", "count.merged"))

par(mfrow = c(1,2), xpd=TRUE)

for (i in 1:length(object.list)) {

? netVisual_circle(object.list[[i]]@net$count.merged, weight.scale = T, label.edge= T, edge.weight.max = weight.max[3], edge.width.max = 12, title.name = paste0("Number of interactions - ", names(object.list)[i]))

}


par(mfrow = c(1,2), xpd=TRUE)

netVisual_diffInteraction(cellchat, weight.scale = T, measure = "count.merged", label.edge = T)

netVisual_diffInteraction(cellchat, weight.scale = T, measure = "weight.merged", label.edge = T)


num.link <- sapply(object.list, function(x) {rowSums(x@net$count) + colSums(x@net$count)-diag(x@net$count)})

weight.MinMax <- c(min(num.link), max(num.link)) # control the dot size in the different datasets

gg <- list()

for (i in 1:length(object.list)) {

? gg[[i]] <- netAnalysis_signalingRole_scatter(object.list[[i]], title = names(object.list)[i], weight.MinMax = weight.MinMax)

}


patchwork::wrap_plots(plots = gg)



par(mfrow = c(1,2), xpd=TRUE)

netVisual_diffInteraction(cellchat, weight.scale = T, measure = "count.merged", label.edge = T)

netVisual_diffInteraction(cellchat, weight.scale = T, measure = "weight.merged", label.edge = T)


num.link <- sapply(object.list, function(x) {rowSums(x@net$count) + colSums(x@net$count)-diag(x@net$count)})

weight.MinMax <- c(min(num.link), max(num.link)) # control the dot size in the different datasets

gg <- list()

for (i in 1:length(object.list)) {

? gg[[i]] <- netAnalysis_signalingRole_scatter(object.list[[i]], title = names(object.list)[i], weight.MinMax = weight.MinMax)

}


patchwork::wrap_plots(plots = gg)


gg1 <- netAnalysis_signalingChanges_scatter(cellchat, idents.use = "Inflam. DC", signaling.exclude = "MIF")


gg2 <- netAnalysis_signalingChanges_scatter(cellchat, idents.use = "cDC1", signaling.exclude = c("MIF"))


patchwork::wrap_plots(plots = list(gg1,gg2))



cellchat <- computeNetSimilarityPairwise(cellchat, type = "functional")


cellchat <- netEmbedding(cellchat, type = "functional")

報錯:

Error in runUMAP(Similarity, min_dist = min_dist, n_neighbors = n_neighbors, :

? Cannot find UMAP, please install through pip (e.g. pip install umap-learn or reticulate::py_install(packages = 'umap-learn')).

##這里重裝了也沒用挫以!但是,萬能的百度檩奠,讓我找到了答案!yes!!

(49條消息) cellchat分析時附帽,cellchat netEmbedding 運行出錯解決方案_生信~魚的博客-CSDN博客

install.packages("uwot")

library(uwot)

cellchat <- netEmbedding(cellchat, umap.method = 'uwot',type = "functional") #調(diào)用uwot實現(xiàn)umap, 程序自帶埠戳,只需使用參數(shù)umap.method = 'uwot',無需修改對應(yīng)的netEmbedding函數(shù)源碼

修改方案:參考

單細(xì)胞轉(zhuǎn)錄組之使用CellChat對單個數(shù)據(jù)集進(jìn)行細(xì)胞間通訊分析 - 簡書 (jianshu.com)

library(reticulate)

py_available()

reticulate::py_install(packages = 'umap-learn')

重啟R蕉扮,還是報錯

Manifold learning of the signaling networks for datasets 1 2 Error in runUMAP(Similarity, min_dist = min_dist, n_neighbors = n_neighbors, :

? Cannot find UMAP, please install through pip (e.g. pip install umap-learn or reticulate::py_install(packages = 'umap-learn')).


總得來說:

##

cellchat <- aggregateNet(cellchat)?

cellchat <- netAnalysis_computeCentrality(cellchat, slot.name = "netP")

Fortran runtime error: Insufficient number of elements in TARRAY.

Fortran runtime error: Insufficient number of elements in TARRAY.

Fortran runtime error: Insufficient number of elements in TARRAY.

Fortran runtime error: Insufficient number of elements in TARRAY.

Error in unserialize(node$con):

? MultisessionFuture (future_sapply-1) failed to receive results from cluster RichSOCKnode #1 (PID 1498926 on localhost ‘localhost’). The reason reported was ‘error reading from connection’. Post-mortem diagnostic: No process exists with this PID, i.e. the localhost worker is no longer alive. The total size of the 7 globals exported is 151.66 KiB. The three largest globals are ‘computeCentralityLocal’ (142.34 KiB of class ‘function’), ‘...future.FUN’ (5.59 KiB of class ‘function’) and ‘net’ (3.68 KiB of class ‘numeric’)

這個問題還沒有搞懂整胃!根本不知道怎么回事!哭哭

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末喳钟,一起剝皮案震驚了整個濱河市屁使,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌奔则,老刑警劉巖蛮寂,帶你破解...
    沈念sama閱讀 222,807評論 6 518
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異易茬,居然都是意外死亡共郭,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 95,284評論 3 399
  • 文/潘曉璐 我一進(jìn)店門疾呻,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人写半,你說我怎么就攤上這事岸蜗。” “怎么了叠蝇?”我有些...
    開封第一講書人閱讀 169,589評論 0 363
  • 文/不壞的土叔 我叫張陵璃岳,是天一觀的道長。 經(jīng)常有香客問我悔捶,道長铃慷,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 60,188評論 1 300
  • 正文 為了忘掉前任蜕该,我火速辦了婚禮犁柜,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘堂淡。我一直安慰自己馋缅,他們只是感情好扒腕,可當(dāng)我...
    茶點故事閱讀 69,185評論 6 398
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著萤悴,像睡著了一般瘾腰。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上覆履,一...
    開封第一講書人閱讀 52,785評論 1 314
  • 那天蹋盆,我揣著相機(jī)與錄音,去河邊找鬼硝全。 笑死栖雾,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的柳沙。 我是一名探鬼主播岩灭,決...
    沈念sama閱讀 41,220評論 3 423
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼赂鲤!你這毒婦竟也來了噪径?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 40,167評論 0 277
  • 序言:老撾萬榮一對情侶失蹤数初,失蹤者是張志新(化名)和其女友劉穎找爱,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體泡孩,經(jīng)...
    沈念sama閱讀 46,698評論 1 320
  • 正文 獨居荒郊野嶺守林人離奇死亡车摄,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 38,767評論 3 343
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了仑鸥。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片吮播。...
    茶點故事閱讀 40,912評論 1 353
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖眼俊,靈堂內(nèi)的尸體忽然破棺而出意狠,到底是詐尸還是另有隱情,我是刑警寧澤疮胖,帶...
    沈念sama閱讀 36,572評論 5 351
  • 正文 年R本政府宣布环戈,位于F島的核電站,受9級特大地震影響澎灸,放射性物質(zhì)發(fā)生泄漏院塞。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 42,254評論 3 336
  • 文/蒙蒙 一性昭、第九天 我趴在偏房一處隱蔽的房頂上張望拦止。 院中可真熱鬧,春花似錦糜颠、人聲如沸创泄。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,746評論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽鞠抑。三九已至饭聚,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間搁拙,已是汗流浹背秒梳。 一陣腳步聲響...
    開封第一講書人閱讀 33,859評論 1 274
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點兒被人妖公主榨干…… 1. 我叫王不留箕速,地道東北人酪碘。 一個月前我還...
    沈念sama閱讀 49,359評論 3 379
  • 正文 我出身青樓,卻偏偏與公主長得像盐茎,于是被迫代替她去往敵國和親兴垦。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 45,922評論 2 361

推薦閱讀更多精彩內(nèi)容