同DataWhale一起組隊學(xué)習(xí):https://tianchi.aliyun.com/notebook-ai/detail?spm=5176.12281978.0.0.6802593a2HCrSE&postId=95460
- 線性回歸模型:
- 線性回歸對于特征的要求;
- 處理長尾分布;
- 理解線性回歸模型;
- 模型性能驗證:
- 評價函數(shù)與目標函數(shù)厘灼;
- 交叉驗證方法肆糕;
- 留一驗證方法芥吟;
- 針對時間序列問題的驗證;
- 繪制學(xué)習(xí)率曲線先鱼;
- 繪制驗證曲線瓜客;
- 嵌入式特征選擇:
- Lasso回歸适瓦;
- Ridge回歸;
- 決策樹忆家;
- 模型對比:
- 常用線性模型犹菇;
- 常用非線性模型;
- 模型調(diào)參:
- 貪心調(diào)參方法芽卿;
- 網(wǎng)格調(diào)參方法;
- 貝葉斯調(diào)參方法胳搞;
4.3 相關(guān)原理介紹與推薦
由于相關(guān)算法原理篇幅較長卸例,本文推薦了一些博客與教材供初學(xué)者們進行學(xué)習(xí)。
4.3.1 線性回歸模型
https://zhuanlan.zhihu.com/p/49480391
4.3.2 決策樹模型
https://zhuanlan.zhihu.com/p/65304798
4.3.3 GBDT模型
https://zhuanlan.zhihu.com/p/45145899
4.3.4 XGBoost模型
https://zhuanlan.zhihu.com/p/86816771
4.3.5 LightGBM模型
https://zhuanlan.zhihu.com/p/89360721
4.3.6 推薦教材:
- 《機器學(xué)習(xí)》 https://book.douban.com/subject/26708119/
- 《統(tǒng)計學(xué)習(xí)方法》 https://book.douban.com/subject/10590856/
- 《Python大戰(zhàn)機器學(xué)習(xí)》 https://book.douban.com/subject/26987890/
- 《面向機器學(xué)習(xí)的特征工程》 https://book.douban.com/subject/26826639/
- 《數(shù)據(jù)科學(xué)家訪談錄》 https://book.douban.com/subject/30129410/
4.4 代碼示例
4.4.1 讀取數(shù)據(jù)
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
reduce_mem_usage 函數(shù)通過調(diào)整數(shù)據(jù)類型肌毅,幫助我們減少數(shù)據(jù)在內(nèi)存中占用的空間
def reduce_mem_usage(df):
""" iterate through all the columns of a dataframe and modify the data type
to reduce memory usage.
"""
start_mem = df.memory_usage().sum()
print('Memory usage of dataframe is {:.2f} MB'.format(start_mem))
for col in df.columns:
col_type = df[col].dtype
if col_type != object:
c_min = df[col].min()
c_max = df[col].max()
if str(col_type)[:3] == 'int':
if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
else:
if c_min > np.finfo(np.float16).min and c_max < np.finfo(np.float16).max:
df[col] = df[col].astype(np.float16)
elif c_min > np.finfo(np.float32).min and c_max < np.finfo(np.float32).max:
df[col] = df[col].astype(np.float32)
else:
df[col] = df[col].astype(np.float64)
else:
df[col] = df[col].astype('category')
end_mem = df.memory_usage().sum()
print('Memory usage after optimization is: {:.2f} MB'.format(end_mem))
print('Decreased by {:.1f}%'.format(100 * (start_mem - end_mem) / start_mem))
return df
sample_feature = reduce_mem_usage(pd.read_csv('data_for_tree.csv'))
output
Memory usage of dataframe is 62099672.00 MB
Memory usage after optimization is: 16520303.00 MB
Decreased by 73.4%
continuous_feature_names = [x for x in sample_feature.columns if x not in ['price','brand','model','brand']]
continuous_feature_names
output
['SaleID',
'bodyType',
'fuelType',
'gearbox',
'kilometer',
'name',
'notRepairedDamage',
'offerType',
'power',
'seller',
'train',
'v_0',
'v_1',
'v_10',
'v_11',
'v_12',
'v_13',
'v_14',
'v_2',
'v_3',
'v_4',
'v_5',
'v_6',
'v_7',
'v_8',
'v_9',
'used_time',
'city',
'brand_amount',
'brand_price_max',
'brand_price_median',
'brand_price_min',
'brand_price_sum',
'brand_price_std',
'brand_price_average',
'power_bin']
4.4.2 線性回歸 & 五折交叉驗證 & 模擬真實業(yè)務(wù)情況
sample_feature = sample_feature.dropna().replace('-', 0).reset_index(drop=True)
sample_feature['notRepairedDamage'] = sample_feature['notRepairedDamage'].astype(np.float32)
train = sample_feature[continuous_feature_names + ['price']]
train_X = train[continuous_feature_names]
train_y = train['price']
4.4.2 - 1 簡單建模
from sklearn.linear_model import LinearRegression
model = LinearRegression(normalize=True)
model = model.fit(train_X, train_y)
查看訓(xùn)練的線性回歸模型的截距(intercept)與權(quán)重(coef)
print('intercept:'+ str(model.intercept_))
sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
output
intercept:-110670.68276350443
[('v_6', 3367064.3416419127),
('v_8', 700675.5609398747),
('v_9', 170630.27723219778),
('v_7', 32322.66193202066),
('v_12', 20473.670796956518),
('v_3', 17868.079541495277),
('v_11', 11474.93899667472),
('v_13', 11261.764560013775),
('v_10', 2683.920090636247),
('gearbox', 881.8225039248076),
('fuelType', 363.9042507217425),
('bodyType', 189.60271012071334),
('city', 44.94975120521506),
('power', 28.553901616753308),
('brand_price_median', 0.5103728134078945),
('brand_price_std', 0.4503634709263306),
('brand_amount', 0.1488112039506502),
('brand_price_max', 0.0031910186703142654),
('SaleID', 5.355989919859153e-05),
('seller', 1.7292331904172897e-05),
('offerType', -3.609340637922287e-06),
('train', -8.841510862112045e-06),
('brand_price_sum', -2.1750068681876416e-05),
('name', -0.0002980012713070219),
('used_time', -0.0025158943328975666),
('brand_price_average', -0.4049048451011582),
('brand_price_min', -2.2467753486897433),
('power_bin', -34.42064411727693),
('v_14', -274.78411807745636),
('kilometer', -372.8975266607184),
('notRepairedDamage', -495.1903844630634),
('v_0', -2045.0549573528133),
('v_5', -11022.986240572642),
('v_4', -15121.731109855522),
('v_2', -26098.299920511883),
('v_1', -45556.18929722599)]
分析結(jié)果
from matplotlib import pyplot as plt
subsample_index = np.random.randint(low=0, high=len(train_y), size=50)
繪制特征v_9的值與標簽的散點圖筷转,圖片發(fā)現(xiàn)模型的預(yù)測結(jié)果(藍色點)與真實標簽(黑色點)的分布差異較大,且部分預(yù)測值出現(xiàn)了小于0的情況悬而,說明我們的模型存在一些問題
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], model.predict(train_X.loc[subsample_index]), color='blue')
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price is obvious different from true price')
plt.show()
The predicted price is obvious different from true price
通過作圖我們發(fā)現(xiàn)數(shù)據(jù)的標簽(price)呈現(xiàn)長尾分布呜舒,不利于我們的建模預(yù)測。原因是很多模型都假設(shè)數(shù)據(jù)誤差項符合正態(tài)分布笨奠,而長尾分布的數(shù)據(jù)違背了這一假設(shè)袭蝗。參考博客:https://blog.csdn.net/Noob_daniel/article/details/76087829,一般來說特征得符合正太分布般婆,其結(jié)果也要服從正太分布
import seaborn as sns
print('It is clear to see the price shows a typical exponential distribution')
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.distplot(train_y)
plt.subplot(1,2,2)
sns.distplot(train_y[train_y < np.quantile(train_y, 0.9)])
It is clear to see the price shows a typical exponential distribution
在這里我們對標簽進行了 變換到腥,使標簽貼近于正態(tài)分布
train_y_ln = np.log(train_y + 1)
import seaborn as sns
print('The transformed price seems like normal distribution')
plt.figure(figsize=(15,5))
plt.subplot(1,2,1)
sns.distplot(train_y_ln)
plt.subplot(1,2,2)
sns.distplot(train_y_ln[train_y_ln < np.quantile(train_y_ln, 0.9)])
The transformed price seems like normal distribution
model = model.fit(train_X, train_y_ln)
print('intercept:'+ str(model.intercept_))
sorted(dict(zip(continuous_feature_names, model.coef_)).items(), key=lambda x:x[1], reverse=True)
output
intercept:18.750749465596538
[('v_9', 8.052409900567598),
('v_5', 5.764236596653164),
('v_12', 1.6182081236790842),
('v_1', 1.479831058297348),
('v_11', 1.1669016563604946),
('v_13', 0.9404711296033863),
('v_7', 0.7137273083565177),
('v_3', 0.6837875771083749),
('v_0', 0.00850051800990644),
('power_bin', 0.00849796930289138),
('gearbox', 0.007922377278334032),
('fuelType', 0.006684769706830405),
('bodyType', 0.004523520092703996),
('power', 0.0007161894205359879),
('brand_price_min', 3.334351114751914e-05),
('brand_amount', 2.8978797042783603e-06),
('brand_price_median', 1.2571172872987556e-06),
('brand_price_std', 6.659176363456033e-07),
('brand_price_max', 6.194956307516954e-07),
('brand_price_average', 5.999345965077057e-07),
('SaleID', 2.11941700396436e-08),
('seller', 3.923616986867273e-11),
('train', -1.5702994460298214e-11),
('offerType', -2.2708945834892802e-11),
('brand_price_sum', -1.5126504215939166e-10),
('name', -7.015512588894369e-08),
('used_time', -4.122479372349444e-06),
('city', -0.0022187824810420242),
('v_14', -0.004234223418117319),
('kilometer', -0.013835866226884267),
('notRepairedDamage', -0.27027942349846545),
('v_4', -0.8315701200994575),
('v_2', -0.9470842241619425),
('v_10', -1.6261466689774864),
('v_8', -40.343007487616305),
('v_6', -238.79036385506956)]
再次進行可視化,發(fā)現(xiàn)預(yù)測結(jié)果與真實值較為接近蔚袍,且未出現(xiàn)異常狀況
plt.scatter(train_X['v_9'][subsample_index], train_y[subsample_index], color='black')
plt.scatter(train_X['v_9'][subsample_index], np.exp(model.predict(train_X.loc[subsample_index])), color='blue')
plt.xlabel('v_9')
plt.ylabel('price')
plt.legend(['True Price','Predicted Price'],loc='upper right')
print('The predicted price seems normal after np.log transforming')
plt.show()
The predicted price seems normal after np.log transforming
4.4.2 - 2 五折交叉驗證
在使用訓(xùn)練集對參數(shù)進行訓(xùn)練的時候乡范,經(jīng)常會發(fā)現(xiàn)人們通常會將一整個訓(xùn)練集分為三個部分(比如mnist手寫訓(xùn)練集)。一般分為:訓(xùn)練集(train_set),評估集(valid_set)晋辆,測試集(test_set)這三個部分渠脉。這其實是為了保證訓(xùn)練效果而特意設(shè)置的。其中測試集很好理解瓶佳,其實就是完全不參與訓(xùn)練的數(shù)據(jù)连舍,僅僅用來觀測測試效果的數(shù)據(jù)。而訓(xùn)練集和評估集則牽涉到下面的知識了涩哟。
因為在實際的訓(xùn)練中索赏,訓(xùn)練的結(jié)果對于訓(xùn)練集的擬合程度通常還是挺好的(初始條件敏感),但是對于訓(xùn)練集之外的數(shù)據(jù)的擬合程度通常就不那么令人滿意了贴彼。因此我們通常并不會把所有的數(shù)據(jù)集都拿來訓(xùn)練潜腻,而是分出一部分來(這一部分不參加訓(xùn)練)對訓(xùn)練集生成的參數(shù)進行測試,相對客觀的判斷這些參數(shù)對訓(xùn)練集之外的數(shù)據(jù)的符合程度器仗。這種思想就稱為交叉驗證(Cross Validation)
from sklearn.model_selection import cross_val_score
from sklearn.metrics import mean_absolute_error, make_scorer
def log_transfer(func):
def wrapper(y, yhat):
result = func(np.log(y), np.nan_to_num(np.log(yhat)))
return result
return wrapper
scores = cross_val_score(model, X=train_X, y=train_y, verbose=1, cv = 5, scoring=make_scorer(log_transfer(mean_absolute_error)))
output
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 1.0s finished
使用線性回歸模型融涣,對未處理標簽的特征數(shù)據(jù)進行五折交叉驗證(Error 1.36)
print('AVG:', np.mean(scores))
output
AVG: 1.3658023920314064
使用線性回歸模型,對處理過標簽的特征數(shù)據(jù)進行五折交叉驗證(Error 0.19)
scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=1, cv = 5, scoring=make_scorer(mean_absolute_error))
output
[Parallel(n_jobs=1)]: Using backend SequentialBackend with 1 concurrent workers.
[Parallel(n_jobs=1)]: Done 5 out of 5 | elapsed: 1.1s finished
print('AVG:', np.mean(scores))
output
AVG: 0.19325301837047434
scores = pd.DataFrame(scores.reshape(1,-1))
scores.columns = ['cv' + str(x) for x in range(1, 6)]
scores.index = ['MAE']
scores
4.4.2 - 3 模擬真實業(yè)務(wù)情況
但在事實上精钮,由于我們并不具有預(yù)知未來的能力威鹿,五折交叉驗證在某些與時間相關(guān)的數(shù)據(jù)集上反而反映了不真實的情況。通過2018年的二手車價格預(yù)測2017年的二手車價格轨香,這顯然是不合理的忽你,因此我們還可以采用時間順序?qū)?shù)據(jù)集進行分隔。在本例中臂容,我們選用靠前時間的4/5樣本當作訓(xùn)練集科雳,靠后時間的1/5當作驗證集,最終結(jié)果與五折交叉驗證差距不大
import datetime
sample_feature = sample_feature.reset_index(drop=True)
# 這是劃分成五份后脓杉,選取了最近那一份的點
split_point = len(sample_feature) // 5 * 4
train = sample_feature.loc[:split_point].dropna()
val = sample_feature.loc[split_point:].dropna()
train_X = train[continuous_feature_names]
train_y_ln = np.log(train['price'] + 1)
val_X = val[continuous_feature_names]
val_y_ln = np.log(val['price'] + 1)
model = model.fit(train_X, train_y_ln)
mean_absolute_error(val_y_ln, model.predict(val_X))
output
0.19577667270300955
4.4.2 - 4 繪制學(xué)習(xí)率曲線與驗證曲線
from sklearn.model_selection import learning_curve, validation_curve
? learning_curve
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,n_jobs=1, train_size=np.linspace(.1, 1.0, 5 )):
plt.figure()
plt.title(title)
if ylim is not None:
plt.ylim(*ylim)
plt.xlabel('Training example')
plt.ylabel('score')
train_sizes, train_scores, test_scores = learning_curve(estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_size, scoring = make_scorer(mean_absolute_error))
train_scores_mean = np.mean(train_scores, axis=1)
train_scores_std = np.std(train_scores, axis=1)
test_scores_mean = np.mean(test_scores, axis=1)
test_scores_std = np.std(test_scores, axis=1)
plt.grid()#區(qū)域
plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
train_scores_mean + train_scores_std, alpha=0.1,
color="r")
plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
test_scores_mean + test_scores_std, alpha=0.1,
color="g")
plt.plot(train_sizes, train_scores_mean, 'o-', color='r',
label="Training score")
plt.plot(train_sizes, test_scores_mean,'o-',color="g",
label="Cross-validation score")
plt.legend(loc="best")
return plt
plot_learning_curve(LinearRegression(), 'Liner_model', train_X[:1000], train_y_ln[:1000], ylim=(0.0, 0.5), cv=5, n_jobs=1)
4.4.3 多種模型對比
train = sample_feature[continuous_feature_names + ['price']].dropna()
train_X = train[continuous_feature_names]
train_y = train['price']
train_y_ln = np.log(train_y + 1)
4.4.3 - 1 線性模型 & 嵌入式特征選擇
本章節(jié)默認糟秘,學(xué)習(xí)者已經(jīng)了解關(guān)于過擬合、模型復(fù)雜度球散、正則化等概念尿赚。否則請尋找相關(guān)資料或參考如下連接:
- 用簡單易懂的語言描述「過擬合 overfitting」? https://www.zhihu.com/question/32246256/answer/55320482
- 模型復(fù)雜度與模型的泛化能力 http://yangyingming.com/article/434/
- 正則化的直觀理解 https://blog.csdn.net/jinping_shi/article/details/52433975
在過濾式和包裹式特征選擇方法中蕉堰,特征選擇過程與學(xué)習(xí)器訓(xùn)練過程有明顯的分別凌净。而嵌入式特征選擇在學(xué)習(xí)器訓(xùn)練過程中自動地進行特征選擇。嵌入式選擇最常用的是L1正則化與L2正則化嘁灯。在對線性回歸模型加入兩種正則化方法后泻蚊,他們分別變成了嶺回歸與Lasso回歸。
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge
from sklearn.linear_model import Lasso
models = [LinearRegression(),
Ridge(),
Lasso()]
result = dict()
for model in models:
model_name = str(model).split('(')[0]
scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))
result[model_name] = scores
print(model_name + ' is finished')
LinearRegression is finished
Ridge is finished
Lasso is finished
對三種方法的效果對比
result = pd.DataFrame(result)
result.index = ['cv' + str(x) for x in range(1, 6)]
result
model = LinearRegression().fit(train_X, train_y_ln)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_feature_names)
intercept:18.750417086915647
L2正則化在擬合過程中通常都傾向于讓權(quán)值盡可能小丑婿,最后構(gòu)造一個所有參數(shù)都比較小的模型性雄。因為一般認為參數(shù)值小的模型比較簡單没卸,能適應(yīng)不同的數(shù)據(jù)集,也在一定程度上避免了過擬合現(xiàn)象秒旋≡技疲可以設(shè)想一下對于一個線性回歸方程,若參數(shù)很大迁筛,那么只要數(shù)據(jù)偏移一點點煤蚌,就會對結(jié)果造成很大的影響;但如果參數(shù)足夠小细卧,數(shù)據(jù)偏移得多一點也不會對結(jié)果造成什么影響尉桩,專業(yè)一點的說法是『抗擾動能力強』
model = Ridge().fit(train_X, train_y_ln)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_feature_names)
intercept:4.671709787512927
L1正則化有助于生成一個稀疏權(quán)值矩陣,進而可以用于特征選擇贪庙。如下圖蜘犁,我們發(fā)現(xiàn)power與userd_time特征非常重要。
model = Lasso().fit(train_X, train_y_ln)
print('intercept:'+ str(model.intercept_))
sns.barplot(abs(model.coef_), continuous_feature_names)
intercept:8.672182402894254
除此之外止邮,決策樹通過信息熵或GINI指數(shù)選擇分裂節(jié)點時这橙,優(yōu)先選擇的分裂特征也更加重要,這同樣是一種特征選擇的方法导披。XGBoost與LightGBM模型中的model_importance指標正是基于此計算的
4.4.3 - 2 非線性模型
除了線性模型以外屈扎,還有許多我們常用的非線性模型如下,在此篇幅有限不再一一講解原理撩匕。我們選擇了部分常用模型與線性模型進行效果比對鹰晨。
from sklearn.linear_model import LinearRegression
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeRegressor
from sklearn.ensemble import RandomForestRegressor
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.neural_network import MLPRegressor
from xgboost.sklearn import XGBRegressor
from lightgbm.sklearn import LGBMRegressor
models = [LinearRegression(),
DecisionTreeRegressor(),
RandomForestRegressor(),
GradientBoostingRegressor(),
MLPRegressor(solver='lbfgs', max_iter=100),
XGBRegressor(n_estimators = 100, objective='reg:squarederror'),
LGBMRegressor(n_estimators = 100)]
result = dict()
for model in models:
model_name = str(model).split('(')[0]
scores = cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error))
result[model_name] = scores
print(model_name + ' is finished')
LinearRegression is finished
DecisionTreeRegressor is finished
RandomForestRegressor is finished
GradientBoostingRegressor is finished
MLPRegressor is finished
XGBRegressor is finished
LGBMRegressor is finished
result = pd.DataFrame(result)
result.index = ['cv' + str(x) for x in range(1, 6)]
result
LinearRegression | DecisionTreeRegressor | RandomForestRegressor | GradientBoostingRegressor | MLPRegressor | XGBRegressor | LGBMRegressor | |
---|---|---|---|---|---|---|---|
cv1 | 0.191642 | 0.184566 | 0.136266 | 0.168626 | 124.299426 | 0.168698 | 0.141159 |
cv2 | 0.194986 | 0.187029 | 0.139693 | 0.171905 | 257.886236 | 0.172258 | 0.143363 |
cv3 | 0.192737 | 0.184839 | 0.136871 | 0.169553 | 236.829589 | 0.168604 | 0.142137 |
cv4 | 0.195329 | 0.182605 | 0.138689 | 0.172299 | 130.197264 | 0.172474 | 0.143461 |
cv5 | 0.194450 | 0.186626 | 0.137420 | 0.171206 | 268.090236 | 0.170898 | 0.141921 |
可以看到隨機森林模型在每一個fold中均取得了更好的效果
4.4.4 模型調(diào)參
在此我們介紹了三種常用的調(diào)參方法如下:
- 貪心算法 http://www.reibang.com/p/ab89df9759c8
- 網(wǎng)格調(diào)參 https://blog.csdn.net/weixin_43172660/article/details/83032029
- 貝葉斯調(diào)參 https://blog.csdn.net/linxid/article/details/81189154
## LGB的參數(shù)集合:
objective = ['regression', 'regression_l1', 'mape', 'huber', 'fair']
num_leaves = [3,5,10,15,20,40, 55]
max_depth = [3,5,10,15,20,40, 55]
bagging_fraction = []
feature_fraction = []
drop_rate = []
4.4.4 - 1 貪心調(diào)參
best_obj = dict()
for obj in objective:
model = LGBMRegressor(objective=obj)
score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
best_obj[obj] = score
best_leaves = dict()
for leaves in num_leaves:
model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0], num_leaves=leaves)
score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
best_leaves[leaves] = score
best_depth = dict()
for depth in max_depth:
model = LGBMRegressor(objective=min(best_obj.items(), key=lambda x:x[1])[0],
num_leaves=min(best_leaves.items(), key=lambda x:x[1])[0],
max_depth=depth)
score = np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
best_depth[depth] = score
sns.lineplot(x=['0_initial','1_turning_obj','2_turning_leaves','3_turning_depth'], y=[0.143 ,min(best_obj.values()), min(best_leaves.values()), min(best_depth.values())])
4.4.4 - 2 Grid Search 調(diào)參
from sklearn.model_selection import GridSearchCV
parameters = {'objective': objective , 'num_leaves': num_leaves, 'max_depth': max_depth}
model = LGBMRegressor()
clf = GridSearchCV(model, parameters, cv=5)
clf = clf.fit(train_X, train_y)
clf.best_params_
{'max_depth': 15, 'num_leaves': 55, 'objective': 'regression'}
model = LGBMRegressor(objective='regression',
num_leaves=55,
max_depth=15)
np.mean(cross_val_score(model, X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)))
0.13754820909576437
4.4.4 - 3 貝葉斯調(diào)參
from bayes_opt import BayesianOptimization
def rf_cv(num_leaves, max_depth, subsample, min_child_samples):
val = cross_val_score(
LGBMRegressor(objective = 'regression_l1',
num_leaves=int(num_leaves),
max_depth=int(max_depth),
subsample = subsample,
min_child_samples = int(min_child_samples)
),
X=train_X, y=train_y_ln, verbose=0, cv = 5, scoring=make_scorer(mean_absolute_error)
).mean()
return 1 - val
rf_bo = BayesianOptimization(
rf_cv,
{
'num_leaves': (2, 100),
'max_depth': (2, 100),
'subsample': (0.1, 1),
'min_child_samples' : (2, 100)
}
)
rf_bo.maximize()
1 - rf_bo.max['target']
0.1305927066054554