目的:評估分類器準(zhǔn)確性
函數(shù):sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)
輸入:
- y_true:實(shí)際的目標(biāo)結(jié)果
- y_pred:預(yù)測的結(jié)果
- labels: 標(biāo)簽画切,對結(jié)果中的string進(jìn)行排序憋他, 順序?qū)?yīng)0瞄崇、1泵殴、2
- sample_weight:樣本的權(quán)重?
輸出:
- 一個(gè)矩陣冯勉,shape=[y中的類型數(shù)斟览,y中的類型數(shù)]
- 矩陣中每個(gè)值表征分類的準(zhǔn)確性
- 第0行第0列的數(shù)表示y_true中值為0,y_pred中值也為0的個(gè)數(shù)
- 第0行第1列的數(shù)表示y_true中值為0莉钙,y_pred中值為1的個(gè)數(shù)
示例:
>>> from sklearn.metrics import confusion_matrix
>>> y_true = [2, 0, 2, 2, 0, 1]
>>> y_pred = [0, 0, 2, 2, 0, 2]
>>> confusion_matrix(y_true, y_pred)
array([[2, 0, 0], [0, 0, 1], [1, 0, 2]])
>>> y_true = ["cat", "ant", "cat", "cat", "ant", "bird"]
>>> y_pred = ["ant", "ant", "cat", "cat", "ant", "cat"]
>>> confusion_matrix(y_true, y_pred, labels=["ant", "bird", "cat"])
array([[2, 0, 0], [0, 0, 1], [1, 0, 2]])