軟件環(huán)境:
linux系統(tǒng): CentOS6.7
Hadoop版本: 2.6.5
zookeeper版本: 3.4.8
</br>
主機(jī)配置:
一共m1, m2, m3這五部機(jī), 每部主機(jī)的用戶名都為centos
192.168.179.201: m1
192.168.179.202: m2
192.168.179.203: m3
m1: Zookeeper, Namenode, DataNode, ResourceManager, NodeManager, Master, Worker
m2: Zookeeper, Namenode, DataNode, ResourceManager, NodeManager, Worker
m3: Zookeeper, DataNode, NodeManager, Worker
</br>
前期準(zhǔn)備
1.配置主機(jī)IP:
sudo vi /etc/sysconfig/network-scripts/ifcfg-eth0
2.配置主機(jī)名:
sudo vi /etc/sysconfig/network
3.配置主機(jī)名和IP的映射關(guān)系:
sudo vi /etc/hosts
4.關(guān)閉防火墻
- 臨時(shí)關(guān)閉:
service iptables stop
service iptables status
- 開機(jī)時(shí)自動(dòng)關(guān)閉:
chkconfig iptables off
chkconfig iptables --list
</br>
搭建步驟:
一.安裝配置Zookeeper集群(在m1,m2,m3三部主機(jī)上)
1.解壓
tar -zxvf zookeeper-3.4.8.tar.gz -C /home/hadoop/soft/zookeeper
2.配置環(huán)境變量
vi /etc/profile
## Zookeeper
export ZK_HOME=/home/centos/soft/zookeeper
export CLASSPATH=$CLASSPATH:$ZK_HOME/lib
export PATH=$PATH:$ZK_HOME/sbin:$ZK_HOME/bin
source /etc/profile
3.修改配置
- 配置zoo.cfg文件
cd /home/centos/soft/zookeeper/conf/
cp zoo_sample.cfg zoo.cfg
vi zoo.cfg
## 修改dataDir此項(xiàng)配置
dataDir=/home/centos/soft/zookeeper/tmp
## 添加以下三項(xiàng)配置
server.1=m1:2888:3888
server.2=m2:2888:3888
server.3=m3:2888:3888
- 創(chuàng)建tmp目錄
mkdir /home/centos/soft/zookeeper/tmp
- 編輯myid文件
touch /home/centos/soft/zookeeper/tmp/myid
echo 1 > /home/centos/soft/zookeeper/tmp/myid ## 在m1主機(jī)上myid=1
- 配置zookeeper日志存放位置
- 編輯
zkEnv.sh
文件
vi /home/centos/soft/zookeeper/bin/zkEnv.sh
# 編輯下列該項(xiàng)配置
if [ "x${ZOO_LOG_DIR}" = "x" ]
then
ZOO_LOG_DIR="/home/centos/soft/zookeeper/logs" ## 修改此項(xiàng)
fi
- 創(chuàng)建
logs
目錄
mkdir /home/centos/soft/zookeeper/logs
5. 拷貝到其他主機(jī)并修改myid
- 拷貝到其他主機(jī)
scp -r /home/centos/soft/zookeeper/ m2:/home/centos/soft/
scp -r /home/centos/soft/zookeeper/ m3:/home/centos/soft/
- 修改myid
echo 2 > /home/centos/soft/zookeeper/tmp/myid ## m2主機(jī)
echo 3 > /home/centos/soft/zookeeper/tmp/myid ## m3主機(jī)
</br>
</br>
二.安裝配置hadoop集群(在m1上操作)
1.解壓
tar -zxvf hadoop-2.6.5.tar.gz -C /home/centos/soft/hadoop
2.將Hadoop配置進(jìn)環(huán)境變量
vi /etc/profile
## Java
export JAVA_HOME=/home/centos/soft/jdk
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib
export PATH=$PATH:$JAVA_HOME/bin
## Hadoop
export HADOOP_USER_NAME=centos
export HADOOP_HOME=/home/centos/soft/hadoop
export CLASSPATH=$CLASSPATH:$HADOOP_HOME/lib
export PATH=$PATH:$HADOOP_HOME/bin
source /etc/profile
3.修改Hadoop的配置文件 (切記:不可在配置文件中使用變量, 如$HADOOP_HOME, 不然會(huì)死的很慘), hadoop所有的配置文件都在${HADOOP_HOME}/etc/hadoop目錄下, 一共有6個(gè)配置文件需要改**
- 編輯$hadoop-env.sh文件
export JAVA_HOME=/home/centos/soft/jdk
- 編輯core-site.xml文件
<configuration>
<property>
? <name>fs.defaultFS</name>
? <value>hdfs://ns1</value>
</property>
<property>
? <name>hadoop.tmp.dir</name>
? <value>/home/centos/soft/hadoop/tmp</value>
</property>
<property>
? <name>ha.zookeeper.quorum</name>
? <value>m1:2181,m2:2181,m3:2181</value>
</property>
<!-- 在Hive的hplsql功能中用到: Hadoop的代理接口與代理名, 其中centos為HDFS的主NameNode的用戶, 根據(jù)實(shí)際情況修改 -->
<property>
<name>hadoop.proxyuser.centos.hosts</name>
<value>*</value>
</property>
<property>
? <name>hadoop.proxyuser.centos.groups</name>
<value>*</value>
</property>
</configuration>
- 編輯hdfs-site.xml文件
<configuration>
<property>
? <name>dfs.nameservices</name>
? <value>ns1</value>
</property>
<property>
? <name>dfs.ha.namenodes.ns1</name>
? <value>nn1,nn2</value>
</property>
<property>
? <name>dfs.namenode.rpc-address.ns1.nn1</name>
? <value>m1:9000</value>
</property>
<property>
? <name>dfs.namenode.http-address.ns1.nn1</name>
? <value>m1:50070</value>
</property>
<property>
? <name>dfs.namenode.rpc-address.ns1.nn2</name>
? <value>m2:9000</value>
</property>
<property>
? <name>dfs.namenode.http-address.ns1.nn2</name>
? <value>m2:50070</value>
</property>
<property>
? <name>dfs.namenode.shared.edits.dir</name>
? <value>qjournal://m1:8485;m28485;m3:8485/ns1</value>
</property>
<property>
? <name>dfs.journalnode.edits.dir</name>
? <value>/home/centos/soft/hadoop/journal</value>
</property>
<property>
? <name>dfs.namenode.name.dir</name>
? <value>/home/centos/soft/hadoop/tmp/dfs/name</value>
</property>
<property>
?<name>dfs.datanode.data.dir</name>
?<value>/home/centos/soft/hadoop/tmp/dfs/data</value>
</property>
<property>
? <name>dfs.replication</name>
? <value>1</value>
</property>
<property>
? <name>dfs.ha.automatic-failover.enabled</name>
? <value>true</value>
</property>
<property>
? <name>dfs.webhdfs.enabled</name>
? <value>true</value>
</property>
<property>
? <name>dfs.client.failover.proxy.provider.ns1</name>
? <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<property>
? <name>dfs.ha.fencing.methods</name>
? <value>
??? sshfence
??? shell(/bin/true)
? </value>
</property>
<property>
? <name>dfs.ha.fencing.ssh.private-key-files</name>
? <value>/home/centos/.ssh/id_rsa</value>
</property>
<property>
? <name>dfs.ha.fencing.ssh.connect-timeout</name>
? <value>30000</value>
</property>
<property>
? <name>dfs.permissions</name>
? <value>false</value>
</property>
<property>
? <name>heartbeat.recheck.interval</name>
? <value>2000</value>
</property>
<property>
? <name>dfs.heartbeat.interval</name>
<value>1</value>
</property>
<property>
<name>dfs.blockreport.intervalMsec</name>
<value>3600000</value>
<description>Determines block reporting interval in milliseconds.</description>
</property>
</configuration>
```
4. 編輯mapred-site.xml文件
```
<configuration>
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
<property>
<name>mapreduce.jobhistory.address</name>
<value>0.0.0.0:10020</value>
<description>MapReduce JobHistory Server IPC host:port</description>
</property>
<property>
<name>mapreduce.jobhistory.webapp.address</name>
<value>0.0.0.0:19888</value>
<description>MapReduce JobHistory Server Web UI host:port</description>
</property>
<property>
<name>mapreduce.task.io.sort.mb</name>
<value>1</value>
</property>
<property>
<name>yarn.app.mapreduce.am.staging-dir</name>
<value>/user</value>
</property>
<property>
<name>mapreduce.jobhistory.intermediate-done-dir</name>
<value>/user/history/done_intermediate</value>
</property>
<property>
<name>mapreduce.jobhistory.done-dir</name>
<value>/user/history</value>
</property>
</configuration>
```
5. 編輯yarn-site.xml文件
```
<configuration>
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>true</value>
</property>
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yrc</value>
</property>
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm1</name>
<value>m1</value>
</property>
<property>
<name>yarn.resourcemanager.hostname.rm2</name>
<value>m2</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>m1:2181,m2:2181,m3:2181</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle,spark_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>2048</value>
</property>
<property>
<name>yarn.scheduler.maximum-allocation-mb</name>
<value>4096</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/home/centos/soft/hadoop/logs</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.spark_shuffle.class</name>
<value>org.apache.spark.network.yarn.YarnShuffleService</value>
</property>
<property>
<name>yarn.nodemanager.pmem-check-enabled</name>
<value>false</value>
<description>是否啟動(dòng)一個(gè)線程檢查每個(gè)任務(wù)正使用的物理內(nèi)存量珠增,如果任務(wù)超出分配值超歌,則直接將其殺掉,默認(rèn)是true</description>
</property>
<property>
<name>yarn.nodemanager.vmem-check-enabled</name>
<value>false</value>
<description>是否啟動(dòng)一個(gè)線程檢查每個(gè)任務(wù)正使用的物理內(nèi)存量蒂教,如果任務(wù)超出分配值巍举,則直接將其殺掉,默認(rèn)是true</description>
</property>
<property>
<name>spark.shuffle.service.port</name>
<value>7337</value>
</property>
</configuration>
```
6. 編輯slaves文件, slaves是指定子節(jié)點(diǎn)的位置, 在HDFS上為DataNode的節(jié)點(diǎn)位置, 在YARN上為NodeManager的節(jié)點(diǎn)位置, 以你的實(shí)際情況而定
```
m1
m2
m3
```
****
</br>
</br>
##三.初始化Hadoop
#####1. 配置主機(jī)之間免密碼登陸
1. 在m1上生產(chǎn)一對(duì)密匙
```
ssh-keygen -t rsa
```
2. 將公鑰拷貝到其他節(jié)點(diǎn)悴品,包括本主機(jī)
```
ssh-coyp-id 127.0.0.1
ssh-coyp-id localhost
ssh-coyp-id m1
ssh-coyp-id m2
ssh-coyp-id m3
```
3. 在其他主機(jī)上重復(fù)(1)(2)的操作
---
#####2.將配置好的hadoop拷貝到其他節(jié)點(diǎn)
```
scp -r /home/centos/soft/hadoop m2:/home/centos/soft/
scp -r /home/centos/soft/hadoop m3:/home/centos/soft/
```
---
</br>
####注意:嚴(yán)格按照下面的步驟
#####3.啟動(dòng)zookeeper集群(分別在m1禀综、m2简烘、m3上啟動(dòng)zk)
1. 啟動(dòng)zookeeper服務(wù)
```
cd /home/centos/soft/zookeeper-3.4.8/bin/
```
```
./zkServer.sh start
```
2. 查看狀態(tài):一個(gè)leader苔严,兩個(gè)follower
```
./zkServer.sh status
```
----
#####4.啟動(dòng)journalnode (分別在m1、m2孤澎、m3主機(jī)上執(zhí)行, 必須在HDFS格式化前執(zhí)行, 不然會(huì)報(bào)錯(cuò))
1. 啟動(dòng)JournalNode服務(wù)
```
cd /home/centos/soft/hadoop
```
```
sbin/hadoop-daemon.sh start journalnode
```
2. 運(yùn)行jps命令檢驗(yàn)届氢,m1、m2覆旭、m3上多了JournalNode進(jìn)程
```
jps
```
---
#####5.格式化HDFS(在m1上執(zhí)行即可)
1. 在m1上執(zhí)行命令:
```
hdfs namenode -format
```
2. 格式化后會(huì)在根據(jù)core-site.xml中的hadoop.tmp.dir配置生成個(gè)文件退子,這里我配置的是/home/centos/soft/hadoop/tmp,然后將m1主機(jī)上的/home/centos/soft/hadoop下的tmp目錄拷貝到m2主機(jī)上的/home/centos/soft/hadoop目錄下
```
scp -r /home/centos/soft/hadoop/tmp/ m2:/home/centos/soft/hadoop/
```
---
#####6.格式化ZK(在m1上執(zhí)行)
```
hdfs zkfc -formatZK
```
---
#####7.啟動(dòng)HDFS(在m1上執(zhí)行)
```
sbin/start-dfs.sh
```
---
#####8.啟動(dòng)YARN(在m1,m2上執(zhí)行)
```
sbin/start-yarn.sh
```
---
##### 至此型将,Hadoop-2.6.5配置完畢!!!
---
</br>
</br>
###四.檢驗(yàn)Hadoop集群搭建成功
######0.在Windows下編輯hosts文件, 配置主機(jī)名與IP的映射(此步驟可跳過)**
```
C:\Windows\System32\drivers\etc\hosts
192.168.179.201 m1
192.168.179.202 m2
192.168.179.203 m3
```
----
######1.可以統(tǒng)計(jì)瀏覽器訪問:
```
http://m1:50070
NameNode 'm1:9000' (active)
http://m2:50070
NameNode 'm2:9000' (standby)
```
---
######2.驗(yàn)證HDFS HA
1. 首先向hdfs上傳一個(gè)文件
```
hadoop fs -put /etc/profile /profile
```
2. 查看是否已上傳到HDFS上
```
hadoop fs -ls /
```
3. 然后再kill掉active的NameNode
```
kill -9 <pid of NN>
```
4. 通過瀏覽器訪問:http://m2:50070
```
NameNode 'm2:9000' (active) ## 主機(jī)m2上的NameNode變成了active
```
5. 執(zhí)行命令:
```
hadoop fs -ls / ## 看之前在m1上傳的文件是否還存在<畔椤!七兜!
```
6. 手動(dòng)在m1上啟動(dòng)掛掉的NameNode
```
sbin/hadoop-daemon.sh start namenode
```
7. 通過瀏覽器訪問:http://m1:50070
```
NameNode 'm1:9000' (standby)
```
---
######3.驗(yàn)證YARN:
1. 用瀏覽器訪問: http://m1:8088, 查看是否有NodeManager服務(wù)在運(yùn)行
2. 運(yùn)行一下hadoop提供的demo中的WordCount程序, 在linux上執(zhí)行以下命令
```
hadoop jar /home/centos/soft/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.5.jar wordcount InputParameter OutputParameter
```
在http://m1:8088 上是否有application在運(yùn)行,若有則YARN沒問題
---
</br>
######OK丸凭,大功告成!!惜犀!
</br>
</br>
</br>