Lidar variables selection in SAS

Date: Aug 16, 2017

- All variables used are log transformed to?improve R square.

- In SAS codes, words in bolds are keywords in SAS for programming.



There are various?model selection methods?in SAS PROC REG in which I used STEPWISE and RSQUARE.

STEPWISE is the most popular model selection methods in PROC REG. We can make adjustments to SLE ?and SLS. I used the default setting.

PROC REG DATA = PLOTlog;

MODEL BIO_MG_HAN = Total_retu Elev_minim Elev_maxim Elev_mean Elev_mode Elev_stdde Elev_varia Elev_CV Elev_IQ Elev_kurto Elev_AAD Elev_MAD_m Elev_MAD_1 Elev_L1 Elev_L2?Elev_L_CV Elev_P01 Elev_P05 Elev_P10 Elev_P20 Elev_P25 Elev_P30?Elev_P40 Elev_P50 Elev_P60 Elev_P70 Elev_P75 Elev_P80 Elev_P90?Elev_P95 Elev_P99 Canopy_rel Elev_SQRT_ Elev_CURT_?

/ SELECTION = STEPWISE;

RUN;

R square selection (RSQUARE) always identifies the model with the largest R square for each number of variables considered. It requires much more computer time than the other selection methods. We can fix this problem by dividing the data into subgroups, find the largest R square in subgroup firstly, then compare the best ones. However, this only applies to 1 variables.

PROC REG DATA = PLOTlog;

MODEL BIO_MG_HAN = Total_retu Elev_minim Elev_maxim Elev_mean Elev_mode Elev_stdde Elev_varia Elev_CV Elev_IQ Elev_kurto Elev_AAD Elev_MAD_m Elev_MAD_1 Elev_L1 Elev_L2 Elev_L_CV Elev_P01 Elev_P05 Elev_P10 Elev_P20 Elev_P25 Elev_P30 Elev_P40 Elev_P50 Elev_P60 Elev_P70 Elev_P75 Elev_P80 Elev_P90 Elev_P95 Elev_P99 Canopy_rel Elev_SQRT_ Elev_CURT_

/ SELECTION = RSQUARE STOP=1;

RUN;


Results from the?stepwise selection:


Summary of Stepwise Selection

Results from R square selection:


Summary of RSQUARE Selection

Comparison of two models:

PROC REG DATA = PLOTlog OUTEST=OUT1;

MODEL BIO_MG_HAN = Elev_mode / AIC BIC PRESS RSQUARE RMSE;

PROC PRINT DATA = OUT1;

PROC REG DATA = PLOTlog OUTEST=OUT2;

MODEL BIO_MG_HAN = Elev_mode Total_retu Elev_P95/ AIC BIC PRESS RSQUARE RMSE VIF;

PROC PRINT DATA=OUT2;

RUN;


Model comparison

Model Selection Criteria

1. ?Statistical test on individual coefficients at a given value (0.05). It is desirable to keep all predictor variables in the model significant.

For RSQUARE selection model, Elev_mode variable is significant.

For STEWWISE selection model, Elev_mode is significant while Total_retu and Elev_P95 are not significant.?


RSQUARE selection model parameter estimates


STEPWISE selection model parameter estimates

2. Model coefficient of determination R square. The larger, the better.

R square increases with the number of variables in the model.

RSQURE?R square: 0.7837

STEPWISE R square: 0.8223

3. Adjusted R square. The larger, the better.

Compared with R square, Adjusted R square does not always increase with number of variables in the model. It removes the impact of degrees of freedom and gives a quantity that is more comparable than R square over models involving different numbers of parameters.

RSQURE adjusted R square: 0.7786

STEPWISE adjusted R square: 0.8090

4. Mallow's Cp. Close to the number of coefficients (including intercept).

Not considered in here. Mallow's Cp is calculated in the SELECTION process.?

5. Predicted Sum of Squares (PRESS). The smaller, the better.

The PRESS statistic gives a good indication of the predictive power of the model. It can be used in combination with RMSE. We get smaller RMSE when the model gets?closer to each data point, however, this could cause overfitting problem which gives us not representative and predictive?model. The PRESS guards against this by testing how well the current model would predict the points in the dataset.

RSQUARE PRESS: 2.13015

STEPWISE PRESS: 1.79648

6. Model Selection Criteria Based on Information Theory, including AIC, AICC,

BIC and SBC. The smaller, the better.

AIC is not a test of the model in the sense of hypothesis testing; rather it is a test between models - a tool for model selection. Akaike's rule of thumb: two models are essentially indistinguishable if the difference of their AICs is less than 2.

7. Variance Inflation (VIF).?

This is for multicollinearity detection and diagnostics. VIF provide an indication of which regression coefficients are adversely affected and to what extent. It is generally believed that if any VIF exceeds 10, there is a reason for at least some concerns on multicollinearity in the data.?

The highest VIF in the STEPWISE selection model is 4.99, which is smaller than 10.?

Summary


Comparison Summary

STEPWISE model is better.

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市狮杨,隨后出現(xiàn)的幾起案子厨诸,更是在濱河造成了極大的恐慌,老刑警劉巖禾酱,帶你破解...
    沈念sama閱讀 222,104評(píng)論 6 515
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件微酬,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡颤陶,警方通過(guò)查閱死者的電腦和手機(jī)颗管,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,816評(píng)論 3 399
  • 文/潘曉璐 我一進(jìn)店門(mén),熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)滓走,“玉大人垦江,你說(shuō)我怎么就攤上這事〗练剑” “怎么了比吭?”我有些...
    開(kāi)封第一講書(shū)人閱讀 168,697評(píng)論 0 360
  • 文/不壞的土叔 我叫張陵绽族,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我衩藤,道長(zhǎng)吧慢,這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 59,836評(píng)論 1 298
  • 正文 為了忘掉前任赏表,我火速辦了婚禮检诗,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘瓢剿。我一直安慰自己逢慌,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 68,851評(píng)論 6 397
  • 文/花漫 我一把揭開(kāi)白布间狂。 她就那樣靜靜地躺著攻泼,像睡著了一般。 火紅的嫁衣襯著肌膚如雪鉴象。 梳的紋絲不亂的頭發(fā)上坠韩,一...
    開(kāi)封第一講書(shū)人閱讀 52,441評(píng)論 1 310
  • 那天,我揣著相機(jī)與錄音炼列,去河邊找鬼。 笑死音比,一個(gè)胖子當(dāng)著我的面吹牛俭尖,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播洞翩,決...
    沈念sama閱讀 40,992評(píng)論 3 421
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼稽犁,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了骚亿?” 一聲冷哼從身側(cè)響起已亥,我...
    開(kāi)封第一講書(shū)人閱讀 39,899評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎来屠,沒(méi)想到半個(gè)月后虑椎,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 46,457評(píng)論 1 318
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡俱笛,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,529評(píng)論 3 341
  • 正文 我和宋清朗相戀三年捆姜,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片迎膜。...
    茶點(diǎn)故事閱讀 40,664評(píng)論 1 352
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡泥技,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出磕仅,到底是詐尸還是另有隱情珊豹,我是刑警寧澤簸呈,帶...
    沈念sama閱讀 36,346評(píng)論 5 350
  • 正文 年R本政府宣布,位于F島的核電站店茶,受9級(jí)特大地震影響蜕便,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜忽妒,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 42,025評(píng)論 3 334
  • 文/蒙蒙 一玩裙、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧段直,春花似錦吃溅、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 32,511評(píng)論 0 24
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至喧务,卻和暖如春赖歌,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背功茴。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 33,611評(píng)論 1 272
  • 我被黑心中介騙來(lái)泰國(guó)打工庐冯, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人坎穿。 一個(gè)月前我還...
    沈念sama閱讀 49,081評(píng)論 3 377
  • 正文 我出身青樓展父,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親玲昧。 傳聞我的和親對(duì)象是個(gè)殘疾皇子栖茉,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,675評(píng)論 2 359

推薦閱讀更多精彩內(nèi)容