Apache Cassandra NoSQL Performance Benchmarks

翻譯出處: https://academy.datastax.com/planet-cassandra/nosql-performance-benchmarks

Apache Cassandra NoSQL效率標(biāo)準(zhǔn)

Apache Cassandra? is a leading NoSQL database platform for modern applications. By offering benefits of continuous availability, high scalability & performance, strong security, and operational simplicity — while lowering overall cost of ownership — Cassandra has become a proven choice for both technical and business stakeholders. When compared to other database platforms such as HBase, MongoDB, Redis, MySQL and many others, the linearly scalable database Apache Cassandra? delivers higher performance under heavy workloads.

Apache Cassandra?? 是領(lǐng)先的NoSQL應(yīng)用數(shù)據(jù)庫平臺. 提供可持續(xù)應(yīng)用能力简卧,高伸縮和性能,強大安全性和操作簡單—同時降低學(xué)習(xí)成本—Cassandra 已經(jīng)成為技術(shù)和業(yè)務(wù)兩者的最佳選擇。對比其他數(shù)據(jù)庫如Hbase,MongoDB,Redis谢澈,Mysql和更多其他數(shù)據(jù)庫,這個可伸縮數(shù)據(jù)庫 Apache Cassandra? 在高負(fù)載的情況下能提供高性能服務(wù)糊余。

The following benchmark tests provide a graphical, ‘a(chǎn)t a glance’ view of how these platforms compare under different scenarios. ?When selecting a database it is critically important to understand your use case and find the right fit. Below you will find the following three bechmarks; taking a look at write/read performance and performance at scale:?

下面的基準(zhǔn)測試提供了一個圖形對比霍殴,‘對比’ 可以看出在不同場景下面數(shù)據(jù)庫的比較。在選擇的數(shù)據(jù)庫時帝簇,了解你應(yīng)用數(shù)據(jù)庫使用場景和選擇適合的數(shù)據(jù)庫是重要的徘郭。你會發(fā)現(xiàn)以下三種情況:看下寫/讀的情況和掃描情況:

University of Toronto Benchmark

多倫多大學(xué)的標(biāo)準(zhǔn)

Netflix: Benchmarking Apache Cassandra Scalability

Netflix公司:Apache Cassandra 可擴展性能

End Point Benchmark Configuration and Results

最后得到標(biāo)準(zhǔn)的配置和結(jié)果

University of Toronto NoSQL Database Performance

多倫多大學(xué) NoSQL數(shù)據(jù)庫性能

Engineers at the University of Toronto, in 2012, conducted a thorough benchmarking analysis of various NoSQL platforms including: Apache Cassandra, HBase, MySQL, Redis and Voldemort. The testing was extremely thorough and included a view into performance under varying workloads.

在2012年,多倫多大學(xué)的工程師們丧肴,對于各種的NoSQL數(shù)據(jù)庫做了全面的性能測試:Apache Cassandra残揉,Hbase,MySQL芋浮,Redis 和 Voldemort.測試得非常全面抱环,包括在不同的極端工作負(fù)載條件下的性能統(tǒng)計。

For a look at the details behind this analysis as well as a complete write up of the benchmark configurations used, the white paperSolving Big Data Challenges for Enterprise Application Performance Managementprovides all of the insight from this test. Overall their results identified Apache Cassandra the “clear winner throughout our experiments”.

來查看一下分析細(xì)節(jié)背后的一個完整的基準(zhǔn)測試纸巷,《解決企業(yè)應(yīng)用程序性能管理的大數(shù)據(jù)挑戰(zhàn)》的白皮書提供了這個測試的所有見解.總體來說镇草,Apache Cassandra 是“整個實驗當(dāng)中明顯的贏家”.

A summary of throughput and latency results are available here.

吞吐量和延遲結(jié)果在匯總?cè)缦?

Throughput for workload Read/Write

吞吐量在工作中的讀/寫

Throughput for workload Read/Scan/Write

工作中的吞吐量 讀/掃描/寫

Read latency for workload Read/Write

工作中的讀等待 讀/寫

Write latency for workload Read/Write

工作中的寫操作 讀/寫

If this benchmarking data from University of Toronto is interesting,take a 10 minute Cassandra walkthroughand learn more.

多倫多大學(xué)對于標(biāo)準(zhǔn)數(shù)據(jù)得到的有趣結(jié)果,十分鐘 Cassandra 入門和學(xué)習(xí)?

Netflix

Netflix decided to run a test designed to validate their tooling and automation scalability as well as the performance characteristics of Cassandra. The results of their testing are provided below. For a more thorough write up of the Netflix testing process including configuration settings and commentary, visit their tech blog post titledBenchmarking Cassandra Scalability on AWS – Over a million writes per second.

Netflix 決定運行一個測試來驗證它們的工具和自動化可伸縮性以及Cassandra的性能特性.這測試結(jié)果提供如下:有關(guān)Netflix測試過程的更詳細(xì)的描述瘤旨,包括設(shè)置配置和評論梯啤,請訪問他們的技術(shù)博客,標(biāo)題為《對AWS的Casdand可伸縮性進(jìn)行基準(zhǔn)測試-每秒超過一百萬次寫入》.


End Point Benchmark Configuration and Results Summary

最終基本配置和結(jié)果摘要

End Point, a database and open source consulting company, benchmarked the top NoSQL databases — Apache Cassandra, Apache HBase, and MongoDB — using a variety of different workloads on Amazon Web Services EC2 instances. This is an industry-standard platform for hosting horizontally scalable services such as the NoSQL databases that were tested. In order to minimize the effect of AWS CPU and I/O variability, End Point performed each test 3 times on 3 different days. New EC2 instances were used for each test run to further reduce the impact of any “l(fā)ame instance” or “noisy neighbor” effect on any one test.

最終存哲,一個數(shù)據(jù)庫和開源咨詢公司条辟,檢測到最好的NoSQL數(shù)據(jù)庫—??Apache Cassandra, Apache HBase, and MongoDB — 運用了大量的不同工作負(fù)載在亞馬遜Web服務(wù) EC2實例上黔夭。這是一個可伸縮服務(wù)的行業(yè)標(biāo)準(zhǔn)平臺,如被測試的NoSQL數(shù)據(jù)庫.為了盡量減少AWS CPU和I/O可變性的影響羽嫡。結(jié)束點在3個不同的時間進(jìn)行了3次測試.新EC2實例能運用每次測試執(zhí)行進(jìn)一步減少任何“差勁的實例”或“嘈雜的鄰居” 效率對任何一個測試的影響本姥。

A summary of the workload analysis is available below. For a review of the entire testing process with testing environment configuration details, thebenchmarking NoSQL databases white paperby End Point is available.

下面是工作負(fù)載分析的總結(jié).對于具有測試環(huán)境配置細(xì)節(jié)的整個測試過程的回顧,可以使用對《NOSQL數(shù)據(jù)庫白皮書》的最終基準(zhǔn)測試。



Goals for the Tests

成功的測試

Select workloads that are typical of today’s modern applications

選擇當(dāng)今現(xiàn)代應(yīng)用中典型的工作負(fù)載杭棵。

Use data volumes that are representative of ‘big data’ datasets that exceed the RAM capacity for each node

運用數(shù)據(jù)量可以代表“大數(shù)據(jù)” 數(shù)據(jù)集并超過每個節(jié)點的RAM容量婚惫。

Ensure that all data written was done in a manner that allowed no data loss (i.e. durable writes), which is what most production environments require

確保所有數(shù)據(jù)已經(jīng)寫入以允許數(shù)據(jù)丟失的方式(持久化).這也是大多生產(chǎn)環(huán)境的需要。

Tested Workloads

測試負(fù)載

The following workloads were included in the benchmark:

以下工作負(fù)載中包括在基準(zhǔn)中:

Read-mostly workload, based on YCSB’s provided workload B: 95% read to 5% update ratio

更多讀取工作量魂爪,基于YCSB’s 提供工作負(fù)載 B:95% 讀 5% 更新率

Read/write combination, based on YCSB’s workload A: 50% read to 50% update ratio

基于YCSB’s的工作負(fù)荷A:50% 讀取50% 更新率

Read-modify-write, based on YCSB workload F: 50% read to 50% read-modify-write

讀-修改-寫先舷,基于基于YCSB’s的工作負(fù)荷 F:50% 讀 50% 讀-修改-寫

Mixed operational and analytical: 60% read, 25% update, 10% insert, and 5% scan

最大操作和解析: 60% 讀,25% 修改滓侍,10%插入和5%掃描

Insert-mostly combined with read: 90% insert to 10% read ratio

插入和讀:90% 插入到10%讀

Throughput Results

吞吐量結(jié)果:








Get started with the best distribution of Apache Cassandra?

從Apache Cassandra 的最佳發(fā)行開始

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末蒋川,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子撩笆,更是在濱河造成了極大的恐慌捺球,老刑警劉巖,帶你破解...
    沈念sama閱讀 216,591評論 6 501
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件夕冲,死亡現(xiàn)場離奇詭異氮兵,居然都是意外死亡,警方通過查閱死者的電腦和手機歹鱼,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,448評論 3 392
  • 文/潘曉璐 我一進(jìn)店門泣栈,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人弥姻,你說我怎么就攤上這事南片。” “怎么了庭敦?”我有些...
    開封第一講書人閱讀 162,823評論 0 353
  • 文/不壞的土叔 我叫張陵铃绒,是天一觀的道長。 經(jīng)常有香客問我螺捐,道長颠悬,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 58,204評論 1 292
  • 正文 為了忘掉前任定血,我火速辦了婚禮赔癌,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘澜沟。我一直安慰自己灾票,他們只是感情好,可當(dāng)我...
    茶點故事閱讀 67,228評論 6 388
  • 文/花漫 我一把揭開白布茫虽。 她就那樣靜靜地躺著刊苍,像睡著了一般既们。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上正什,一...
    開封第一講書人閱讀 51,190評論 1 299
  • 那天啥纸,我揣著相機與錄音,去河邊找鬼婴氮。 笑死斯棒,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的主经。 我是一名探鬼主播荣暮,決...
    沈念sama閱讀 40,078評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼罩驻!你這毒婦竟也來了穗酥?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 38,923評論 0 274
  • 序言:老撾萬榮一對情侶失蹤砾跃,失蹤者是張志新(化名)和其女友劉穎蜓席,沒想到半個月后课锌,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,334評論 1 310
  • 正文 獨居荒郊野嶺守林人離奇死亡祈秕,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 37,550評論 2 333
  • 正文 我和宋清朗相戀三年请毛,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片固棚。...
    茶點故事閱讀 39,727評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡仙蚜,死狀恐怖委粉,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情汁汗,我是刑警寧澤,帶...
    沈念sama閱讀 35,428評論 5 343
  • 正文 年R本政府宣布祈争,位于F島的核電站送爸,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏墨吓。R本人自食惡果不足惜纹磺,卻給世界環(huán)境...
    茶點故事閱讀 41,022評論 3 326
  • 文/蒙蒙 一橄杨、第九天 我趴在偏房一處隱蔽的房頂上張望式矫。 院中可真熱鬧,春花似錦聪廉、人聲如沸故慈。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,672評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽拆撼。三九已至闸度,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間娶视,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 32,826評論 1 269
  • 我被黑心中介騙來泰國打工寝凌, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留较木,地道東北人伐债。 一個月前我還...
    沈念sama閱讀 47,734評論 2 368
  • 正文 我出身青樓峰锁,卻偏偏與公主長得像双戳,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子魄衅,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 44,619評論 2 354

推薦閱讀更多精彩內(nèi)容