人臉美白原理
人臉美白原理說透了,就是一種圖像的顏色空間處理娱仔,所以我們需要通過顏色空間進(jìn)行設(shè)計(jì)殉了。
不過,我們先來參考以下PS對(duì)于圖像美白的處理步驟:
- 首先拟枚,新建一個(gè)圖層薪铜,將這個(gè)圖層設(shè)置為白色
- 接著,將白色圖層與原本圖像進(jìn)行alpha通道的顏色混合恩溅,這樣就可以使圖像整體變白隔箍。
通過PS的操作,我們大致可以知道需要?jiǎng)?chuàng)建一個(gè)與原圖同等大小維度的圖像脚乡,然后全部賦值為白色蜒滩,然后通過圖像圖像加權(quán)和將兩個(gè)圖像疊加即可。
不過奶稠,這里明顯存在很多問題俯艰,在PS中,我們雖然創(chuàng)建了全白色的圖層锌订,但是我們可以剪裁或者使用畫筆工具只讓白色疊加倒人物身上竹握。而程序中,我們這么做會(huì)導(dǎo)致整個(gè)圖像偏白辆飘,效果非常不理想啦辐。
那么,我們就需要考慮一個(gè)新的思路來實(shí)現(xiàn)人臉美白效果蜈项。
根據(jù)論文“A Two-Stage Contrast Enhancement Algorithm for Digital Images”芹关,采用映射表,使原圖在色階上有所增強(qiáng)紧卒,并在圖像兩端亮度相對(duì)減弱侥衬,中間增強(qiáng),則會(huì)產(chǎn)生不錯(cuò)的美白效果,又能使圖像白的更自然轴总。
這里贬媒,我們提供一個(gè)美白映射表Color_list:
Color_list = [
1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 31, 33, 35, 37, 39,
41, 43, 44, 46, 48, 50, 52, 53, 55, 57, 59, 60, 62, 64, 66, 67, 69, 71, 73, 74,
76, 78, 79, 81, 83, 84, 86, 87, 89, 91, 92, 94, 95, 97, 99, 100, 102, 103, 105,
106, 108, 109, 111, 112, 114, 115, 117, 118, 120, 121, 123, 124, 126, 127, 128,
130, 131, 133, 134, 135, 137, 138, 139, 141, 142, 143, 145, 146, 147, 149, 150,
151, 153, 154, 155, 156, 158, 159, 160, 161, 162, 164, 165, 166, 167, 168, 170,
171, 172, 173, 174, 175, 176, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187,
188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203,
204, 205, 205, 206, 207, 208, 209, 210, 211, 211, 212, 213, 214, 215, 215, 216,
217, 218, 219, 219, 220, 221, 222, 222, 223, 224, 224, 225, 226, 226, 227, 228,
228, 229, 230, 230, 231, 232, 232, 233, 233, 234, 235, 235, 236, 236, 237, 237,
238, 238, 239, 239, 240, 240, 241, 241, 242, 242, 243, 243, 244, 244, 244, 245,
245, 246, 246, 246, 247, 247, 248, 248, 248, 249, 249, 249, 250, 250, 250, 250,
251, 251, 251, 251, 252, 252, 252, 252, 253, 253, 253, 253, 253, 254, 254, 254,
254, 254, 254, 254, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255,
255, 255, 255, 256]
實(shí)現(xiàn)人臉美白
既然人臉美白的原理,以及美白的顏色映射表都給到了你肘习。下面际乘,我們就可以實(shí)現(xiàn)人臉美白效果,具體代碼如下所示:
def face_whitening(fileName):
img = cv2.imread(fileName)
img = cv2.bilateralFilter(img, 19, 75, 75)
height, width, n = img.shape
img2 = img.copy()
for i in range(height):
for j in range(width):
b = img2[i, j, 0]
g = img2[i, j, 1]
r = img2[i, j, 2]
img2[i, j, 0] = Color_list[b]
img2[i, j, 1] = Color_list[g]
img2[i, j, 2] = Color_list[r]
cv2.imwrite("59_1.jpg",img2)
image = Image.open("59_1.jpg")
# 銳度調(diào)節(jié)
enh_img = ImageEnhance.Sharpness(image)
image_sharped = enh_img.enhance(1.2)
# 顏色均衡調(diào)節(jié)
con_img = ImageEnhance.Contrast(image_sharped)
image_con = con_img.enhance(1.2)
image_con.save("59_2.jpg")
img1 = cv2.imread("58.jpg")
img2 = cv2.imread("59_2.jpg")
cv2.imshow("1", img1)
cv2.imshow("2", img2)
cv2.waitKey()
cv2.destroyAllWindows()
if __name__ == "__main__":
face_whitening("58.jpg")
運(yùn)行之后漂佩,效果如下:
1.png