一篇文章看懂TPCx-BB(大數(shù)據(jù)基準(zhǔn)測(cè)試工具)源碼

TPCx-BB是大數(shù)據(jù)基準(zhǔn)測(cè)試工具,它通過(guò)模擬零售商的30個(gè)應(yīng)用場(chǎng)景擦囊,執(zhí)行30個(gè)查詢來(lái)衡量基于Hadoop的大數(shù)據(jù)系統(tǒng)的包括硬件和軟件的性能。其中一些場(chǎng)景還用到了機(jī)器學(xué)習(xí)算法(聚類梅割、線性回歸等)霜第。為了更好地了解被測(cè)試的系統(tǒng)的性能,需要對(duì)TPCx-BB整個(gè)測(cè)試流程深入了解户辞。本文詳細(xì)分析了整個(gè)TPCx-BB測(cè)試工具的源碼泌类,希望能夠?qū)Υ蠹依斫釺PCx-BB有所幫助。

代碼結(jié)構(gòu)

主目錄($BENCH_MARK_HOME)下有:

  • bin
  • conf
  • data-generator
  • engines
  • tools

幾個(gè)子目錄底燎。

bin下有幾個(gè) module ,是執(zhí)行時(shí)需要用到的腳本:bigBench刃榨、cleanLogs、logEnvInformation双仍、runBenchmark枢希、zipLogs等

conf下有兩個(gè)配置文件:bigBench.propertiesuserSettings.conf

bigBench.properties 主要設(shè)置 workload(執(zhí)行的benchmarkPhases)和 power_test_0POWER_TEST 階段需要執(zhí)行的SQL查詢)

默認(rèn) workload

workload=CLEAN_ALL,ENGINE_VALIDATION_DATA_GENERATION,ENGINE_VALIDATION_LOAD_TEST,ENGINE_VALIDATION_POWER_TEST,ENGINE_VALIDATION_RESULT_VALIDATION,CLEAN_DATA,DATA_GENERATION,BENCHMARK_START,LOAD_TEST,POWER_TEST,THROUGHPUT_TEST_1,BENCHMARK_STOP,VALIDATE_POWER_TEST,VALIDATE_THROUGHPUT_TEST_1

默認(rèn) power_test_01-30

userSetting.conf 是一些基本設(shè)置,包括JAVA environment 朱沃、default settings for benchmark(database苞轿、engine茅诱、map_tasks、scale_factor ...)搬卒、HADOOP environment瑟俭、
HDFS config and paths、Hadoop data generation options(DFS_REPLICATION契邀、HADOOP_JVM_ENV...)

data-generator下是跟數(shù)據(jù)生成相關(guān)的腳本及配置文件摆寄。詳細(xì)內(nèi)容在下面介紹。

engines下是TPCx-BB支持的4種引擎:biginsights坯门、hive微饥、impala、spark_sql古戴。默認(rèn)引擎為hive欠橘。實(shí)際上,只有hive目錄下不為空允瞧,其他三個(gè)目錄下均為空简软,估計(jì)是現(xiàn)在還未完善。

tools下有兩個(gè)jar包:HadoopClusterExec.jarRunBigBench.jar 述暂。其中 RunBigBench.jar 是執(zhí)行TPCx-BB測(cè)試的一個(gè)非常重要的文件痹升,大部分程序都在該jar包內(nèi)。

數(shù)據(jù)生成

數(shù)據(jù)生成相關(guān)程序和配置都在 data-generator 目錄下畦韭。該目錄下有一個(gè) pdgf.jar 包和 config疼蛾、dicts、extlib 三個(gè)子目錄艺配。

pdgf.jar是數(shù)據(jù)生成的Java程序察郁。config下有兩個(gè)配置文件:bigbench-generation.xmlbigbench-schema.xml

bigbench-generation.xml 主要設(shè)置生成的原始數(shù)據(jù)(不是數(shù)據(jù)庫(kù)表)包含哪幾張表转唉、每張表的表名皮钠、表的大小以及表輸出的目錄、表文件的后綴赠法、分隔符麦轰、字符編碼等。

<schema name="default">
        <tables>    
        <!-- not refreshed tables -->   
            
            <!-- tables not used in benchmark, but some tables have references to them. not refreshed. Kept for legacy reasons  -->
            <table name="income_band"></table>
            <table name="reason"></table>
            <table name="ship_mode"></table>
            <table name="web_site"></table>     
            <!-- /tables not used in benchmark  -->
            
            <!-- Static tables (fixed small size, generated only on node 1, skipped on others, not generated during refresh) -->
            <table name="date_dim" static="true"></table>
            <table name="time_dim" static="true"></table>
            <table name="customer_demographics" static="true"></table>
            <table name="household_demographics" static="true"></table>
            <!-- /static tables -->
            
            <!-- "normal" tables. split over all nodes. not generated during refresh -->
            <table name="store"></table>
            <table name="warehouse"></table>
            <table name="promotion"></table>
            <table name="web_page"></table>
            <!-- /"normal" tables.-->
            
        <!-- /not refreshed tables -->  
            
            <!-- 
            refreshed tables. Generated on all nodes. 
            Refresh tables generate extra data during refresh (e.g. add new data to the existing tables)
            In "normal"-Phase  generate table rows:  [0,REFRESH_PERCENTAGE*Table.Size]; 
            In "refresh"-Phase generate table rows:  [REFRESH_PERCENTAGE*Table.Size+1, Table.Size] 
            .Has effect only if  ${REFRESH_SYSTEM_ENABLED}==1. 
            -->
            <table name="customer">
                <scheduler name="DefaultScheduler">
                    <partitioner
                        name="pdgf.core.dataGenerator.scheduler.TemplatePartitioner">
                        <prePartition><![CDATA[
                    if(${REFRESH_SYSTEM_ENABLED}>0){
                        int tableID = table.getTableID();
                        int timeID = 0;
                        long lastTableRow=table.getSize()-1;
                        long rowStart;
                        long rowStop;
                        boolean exclude=false;
                        long refreshRows=table.getSize()*(1.0-${REFRESH_PERCENTAGE});
                        if(${REFRESH_PHASE}>0){
                            //Refresh part
                            rowStart = lastTableRow - refreshRows +1;
                            rowStop  = lastTableRow;
                            if(refreshRows<=0){
                                exclude=true;
                            }
                            
                        }else{
                            //"normal" part
                            rowStart = 0;
                            rowStop = lastTableRow - refreshRows;
                        }
                        return new pdgf.core.dataGenerator.scheduler.Partition(tableID, timeID,rowStart,rowStop,exclude);
                    }else{
                        //DEFAULT
                        return getParentPartitioner().getDefaultPrePartition(project, table);               
                    }
                    
                    ]]></prePartition>
                    </partitioner>
                </scheduler>
            </table>
<output name="SplitFileOutputWrapper">
  <!-- DEFAULT output for all Tables, if no table specific output is specified-->
    <output name="CSVRowOutput">
      <fileTemplate><![CDATA[outputDir + table.getName() +(nodeCount!=1?"_"+pdgf.util.StaticHelper.zeroPaddedNumber(nodeNumber,nodeCount):"")+ fileEnding]]></fileTemplate>
      <outputDir>output/</outputDir>
      <fileEnding>.dat</fileEnding>
      <delimiter>|</delimiter>
      <charset>UTF-8</charset>
      <sortByRowID>true</sortByRowID>
    </output>

    <output name="StatisticsOutput" active="1">
      <size>${item_size}</size><!-- a counter per item .. initialize later-->

      <fileTemplate><![CDATA[outputDir + table.getName()+"_audit" +(nodeCount!=1?"_"+pdgf.util.StaticHelper.zeroPaddedNumber(nodeNumber,nodeCount):"")+ fileEnding]]></fileTemplate>
      <outputDir>output/</outputDir>
      <fileEnding>.csv</fileEnding>
      <delimiter>,</delimiter>
      <header><!--"" + pdgf.util.Constants.DEFAULT_LINESEPARATOR-->
      </header>
      <footer></footer>

bigbench-schema.xml 設(shè)置了很多參數(shù)砖织,有跟表的規(guī)模有關(guān)的款侵,比如每張表的大小(記錄的條數(shù));絕大多數(shù)是跟表的字段有關(guān)的侧纯,比如時(shí)間的起始新锈、結(jié)束、性別比例眶熬、結(jié)婚比例妹笆、指標(biāo)的上下界等块请。還具體定義了每個(gè)字段是怎么生成的,以及限制條件拳缠。示例如下:

生成的數(shù)據(jù)大小由 SCALE_FACTOR(-f) 決定负乡。如 -f 1,則生成的數(shù)據(jù)總大小約為1G脊凰;-f 100,則生成的數(shù)據(jù)總大小約為100G茂腥。那么SCALE_FACTOR(-f) 是怎么精確控制生成的數(shù)據(jù)的大小呢狸涌?

原因是 SCALE_FACTOR(-f) 決定了每張表的記錄數(shù)。如下最岗,customer 表的記錄數(shù)為 100000.0d * ${SF_sqrt}帕胆,即如果 -f 1customer 表的記錄數(shù)為 100000*sqrt(1)= 10萬(wàn)條 ;如果 -f 100customer 表的記錄數(shù)為 100000*sqrt(100)= 100萬(wàn)條

<property name="${customer_size}" type="long">100000.0d * ${SF_sqrt}</property>
<property name="${DIMENSION_TABLES_START_DAY}" type="datetime">2000-01-03 00:00:00</property>
<property name="${DIMENSION_TABLES_END_DAY}" type="datetime">2004-01-05 00:00:00</property> 
<property name="${gender_likelihood}" type="double">0.5</property>
<property name="${married_likelihood}" type="double">0.3</property>
<property name="${WP_LINK_MIN}" type="double">2</property>
<property name="${WP_LINK_MAX}" type="double">25</property>
  <field name="d_date" size="13" type="CHAR" primary="false">
   <gen_DateTime>
     <disableRng>true</disableRng>
     <useFixedStepSize>true</useFixedStepSize>
     <startDate>${date_dim_begin_date}</startDate>
     <endDate>${date_dim_end_date}</endDate>
     <outputFormat>yyyy-MM-dd</outputFormat>
    </gen_DateTime>
  </field>
  <field name="t_time_id" size="16" type="CHAR" primary="false">
   <gen_ConvertNumberToString>
    <gen_Id/>
    <size>16.0</size>
    <characters>ABCDEFGHIJKLMNOPQRSTUVWXYZ</characters>
   </gen_ConvertNumberToString>
  </field>
<field name="cd_dep_employed_count" size="10" type="INTEGER" primary="false">
   <gen_Null probability="${NULL_CHANCE}">
   <gen_WeightedListItem filename="dicts/bigbench/ds-genProbabilities.txt" list="dependent_count" valueColumn="0" weightColumn="0" />
   </gen_Null>
  </field>

dicts下有city.dict、country.dict般渡、male.dict懒豹、female.dict、state.dict驯用、mail_provider.dict等字典文件脸秽,表里每一條記錄的各個(gè)字段應(yīng)該是從這些字典里生成的。

extlib下是引用的外部程序jar包蝴乔。有 lucene-core-4.9.0.jar记餐、commons-net-3.3.jarxml-apis.jarlog4j-1.2.15.jar

總結(jié)

pdgf.jar根據(jù)bigbench-generation.xmlbigbench-schema.xml兩個(gè)文件里的配置(表名薇正、字段名片酝、表的記錄條數(shù)、每個(gè)字段生成的規(guī)則)挖腰,從 dicts 目錄下對(duì)應(yīng)的 .dict
文件獲取表中每一條記錄雕沿、每個(gè)字段的值,生成原始數(shù)據(jù)猴仑。

customer 表里的某條記錄如下:

0 AAAAAAAAAAAAAAAA 1824793 3203 2555 28776 14690 Ms. Marisa Harrington N 17 4 1988 UNITED ARAB EMIRATES RRCyuY3XfE3a Marisa.Harrington@lawyer.com   gdMmGdU9

如果執(zhí)行 TPCx-BB 測(cè)試時(shí)指定 -f 1(SCALE_FACTOR = 1) 則最終生成的原始數(shù)據(jù)總大小約為 1G(977M+8.6M)

[root@node-20-100 ~]# hdfs dfs -du -h /user/root/benchmarks/bigbench/data
12.7 M   38.0 M   /user/root/benchmarks/bigbench/data/customer
5.1 M    15.4 M   /user/root/benchmarks/bigbench/data/customer_address
74.2 M   222.5 M  /user/root/benchmarks/bigbench/data/customer_demographics
14.7 M   44.0 M   /user/root/benchmarks/bigbench/data/date_dim
151.5 K  454.4 K  /user/root/benchmarks/bigbench/data/household_demographics
327      981      /user/root/benchmarks/bigbench/data/income_band
405.3 M  1.2 G    /user/root/benchmarks/bigbench/data/inventory
6.5 M    19.5 M   /user/root/benchmarks/bigbench/data/item
4.0 M    12.0 M   /user/root/benchmarks/bigbench/data/item_marketprices
53.7 M   161.2 M  /user/root/benchmarks/bigbench/data/product_reviews
45.3 K   135.9 K  /user/root/benchmarks/bigbench/data/promotion
3.0 K    9.1 K    /user/root/benchmarks/bigbench/data/reason
1.2 K    3.6 K    /user/root/benchmarks/bigbench/data/ship_mode
3.3 K    9.9 K    /user/root/benchmarks/bigbench/data/store
4.1 M    12.4 M   /user/root/benchmarks/bigbench/data/store_returns
88.5 M   265.4 M  /user/root/benchmarks/bigbench/data/store_sales
4.9 M    14.6 M   /user/root/benchmarks/bigbench/data/time_dim
584      1.7 K    /user/root/benchmarks/bigbench/data/warehouse
170.4 M  511.3 M  /user/root/benchmarks/bigbench/data/web_clickstreams
7.9 K    23.6 K   /user/root/benchmarks/bigbench/data/web_page
5.1 M    15.4 M   /user/root/benchmarks/bigbench/data/web_returns
127.6 M  382.8 M  /user/root/benchmarks/bigbench/data/web_sales
8.6 K    25.9 K   /user/root/benchmarks/bigbench/data/web_site

執(zhí)行流程

要執(zhí)行TPCx-BB測(cè)試审轮,首先需要切換到TPCx-BB源程序的目錄下,然后進(jìn)入bin目錄宁脊,執(zhí)行以下語(yǔ)句:

./bigBench runBenchmark -f 1 -m 8 -s 2 -j 5 

其中断国,-f、-m榆苞、-s稳衬、-j都是參數(shù),用戶可根據(jù)集群的性能以及自己的需求來(lái)設(shè)置。如果不指定吱雏,則使用默認(rèn)值,默認(rèn)值在 conf 目錄下的 userSetting.conf 文件指定跛溉,如下:

export BIG_BENCH_DEFAULT_DATABASE="bigbench"
export BIG_BENCH_DEFAULT_ENGINE="hive"
export BIG_BENCH_DEFAULT_MAP_TASKS="80"
export BIG_BENCH_DEFAULT_SCALE_FACTOR="1000"
export BIG_BENCH_DEFAULT_NUMBER_OF_PARALLEL_STREAMS="2"
export BIG_BENCH_DEFAULT_BENCHMARK_PHASE="run_query"

默認(rèn) MAP_TASKS80(-m 80)街夭、SCALE_FACTOR1000(-f 1000)砰碴、NUMBER_OF_PARALLEL_STREAMS2(-s 2)

所有可選參數(shù)及其意義如下:

General options:
-d  使用的數(shù)據(jù)庫(kù) (默認(rèn): $BIG_BENCH_DEFAULT_DATABASE -> bigbench)
-e  使用的引擎 (默認(rèn): $BIG_BENCH_DEFAULT_ENGINE -> hive)
-f  數(shù)據(jù)集的規(guī)模因子(scale factor) (默認(rèn): $BIG_BENCH_DEFAULT_SCALE_FACTOR -> 1000)
-h  顯示幫助
-m  數(shù)據(jù)生成的`map tasks`數(shù) (default: $BIG_BENCH_DEFAULT_MAP_TASKS)"
-s  并行的`stream`數(shù) (默認(rèn): $BIG_BENCH_DEFAULT_NUMBER_OF_PARALLEL_STREAMS -> 2)

Driver specific options:
-a  偽裝模式執(zhí)行
-b  執(zhí)行期間將調(diào)用的bash腳本在標(biāo)準(zhǔn)輸出中打印出來(lái)
-i  指定需要執(zhí)行的階段 (詳情見(jiàn)$BIG_BENCH_CONF_DIR/bigBench.properties)
-j  指定需要執(zhí)行的查詢 (默認(rèn):1-30共30個(gè)查詢均執(zhí)行)"
-U  解鎖專家模式 

若指定了-U,即解鎖了專家模式板丽,則:

echo "EXPERT MODE ACTIVE"
echo "WARNING - INTERNAL USE ONLY:"
echo "Only set manually if you know what you are doing!"
echo "Ignoring them is probably the best solution" 
echo "Running individual modules:"
echo "Usage: `basename $0` module [options]"

-D  指定需要debug的查詢部分. 大部分查詢都只有一個(gè)單獨(dú)的部分
-p  需要執(zhí)行的benchmark phase (默認(rèn): $BIG_BENCH_DEFAULT_BENCHMARK_PHASE -> run_query)"
-q  指定需要執(zhí)行哪個(gè)查詢(只能指定一個(gè))
-t  指定執(zhí)行該查詢時(shí)用第哪個(gè)stream
-v  metastore population的sql腳本 (默認(rèn): ${USER_POPULATE_FILE:-"$BIG_BENCH_POPULATION_DIR/hiveCreateLoad.sql"})"
-w  metastore refresh的sql腳本 (默認(rèn): ${USER_REFRESH_FILE:-"$BIG_BENCH_REFRESH_DIR/hiveRefreshCreateLoad.sql"})"
-y  含額外的用戶自定義查詢參數(shù)的文件 (global: $BIG_BENCH_ENGINE_CONF_DIR/queryParameters.sql)"
-z  含額外的用戶自定義引擎設(shè)置的文件 (global: $BIG_BENCH_ENGINE_CONF_DIR/engineSettings.sql)"

List of available modules:
    $BIG_BENCH_ENGINE_BIN_DIR

回到剛剛執(zhí)行TPCx-BB測(cè)試的語(yǔ)句:

./bigBench runBenchmark -f 1 -m 8 -s 2 -j 5 

bigBench

bigBench是主腳本呈枉,runBenchmark是module。

bigBench 里設(shè)置了很多環(huán)境變量(包括路徑埃碱、引擎猖辫、STREAM數(shù)等等),因?yàn)楹竺嬲{(diào)用 runBigBench.jar 的時(shí)候需要在Java程序里讀取這些環(huán)境變量砚殿。

bigBench 前面都是在做一些基本工作啃憎,如設(shè)置環(huán)境變量、解析用戶輸入?yún)?shù)似炎、賦予文件權(quán)限辛萍、設(shè)置路徑等等。到最后一步調(diào)用 runBenchmarkrunModule() 方法:

  1. 設(shè)置基本路徑

    export BIG_BENCH_VERSION="1.0"
    export BIG_BENCH_BIN_DIR="$BIG_BENCH_HOME/bin"
    export BIG_BENCH_CONF_DIR="$BIG_BENCH_HOME/conf"
    export BIG_BENCH_DATA_GENERATOR_DIR="$BIG_BENCH_HOME/data-generator"
    export BIG_BENCH_TOOLS_DIR="$BIG_BENCH_HOME/tools"
    export BIG_BENCH_LOGS_DIR="$BIG_BENCH_HOME/logs"
    
  2. 指定 core-site.xmlhdfs-site.xml 的路徑

    數(shù)據(jù)生成時(shí)要用到Hadoop集群羡藐,生成在hdfs上

    export BIG_BENCH_DATAGEN_CORE_SITE="$BIG_BENCH_HADOOP_CONF/core-site.xml"
    

export BIG_BENCH_DATAGEN_HDFS_SITE="$BIG_BENCH_HADOOP_CONF/hdfs-site.xml"
```

  1. 賦予整個(gè)包下所有可執(zhí)行文件權(quán)限(.sh/.jar/.py)

    find "$BIG_BENCH_HOME" -name '*.sh' -exec chmod 755 {} +
    

find "$BIG_BENCH_HOME" -name '.jar' -exec chmod 755 {} +
find "$BIG_BENCH_HOME" -name '
.py' -exec chmod 755 {} +
```

  1. 設(shè)置 userSetting.conf 的路徑并 source

    USER_SETTINGS="$BIG_BENCH_CONF_DIR/userSettings.conf"
    if [ ! -f "$USER_SETTINGS" ]
    then
      echo "User settings file $USER_SETTINGS not found"
      exit 1
    else
      source "$USER_SETTINGS"
    fi
    
  2. 解析輸入?yún)?shù)和選項(xiàng)并根據(jù)選項(xiàng)的內(nèi)容作設(shè)置

    第一個(gè)參數(shù)必須是module_name

    如果沒(méi)有輸入?yún)?shù)或者第一個(gè)參數(shù)以"-"開(kāi)頭贩毕,說(shuō)明用戶沒(méi)有輸入需要運(yùn)行的module。

    if [[ $# -eq 0 || "`echo "$1" | cut -c1`" = "-" ]]
    then
      export MODULE_NAME=""
      SHOW_HELP="1"
    else
      export MODULE_NAME="$1"
      shift
    fi
    export LIST_OF_USER_OPTIONS="$@"
    

解析用戶輸入的參數(shù)

根據(jù)用戶輸入的參數(shù)來(lái)設(shè)置環(huán)境變量

```bash
while getopts ":d:D:e:f:hm:p:q:s:t:Uv:w:y:z:abi:j:" OPT; do

case "$OPT" in
# script options
d)
#echo "-d was triggered, Parameter: $OPTARG" >&2
USER_DATABASE="$OPTARG"
;;
D)
#echo "-D was triggered, Parameter: $OPTARG" >&2
DEBUG_QUERY_PART="$OPTARG"
;;
e)
#echo "-e was triggered, Parameter: $OPTARG" >&2
USER_ENGINE="$OPTARG"
;;
f)
#echo "-f was triggered, Parameter: $OPTARG" >&2
USER_SCALE_FACTOR="$OPTARG"
;;
h)
#echo "-h was triggered, Parameter: $OPTARG" >&2
SHOW_HELP="1"
;;
m)
#echo "-m was triggered, Parameter: $OPTARG" >&2
USER_MAP_TASKS="$OPTARG"
;;
p)
#echo "-p was triggered, Parameter: $OPTARG" >&2
USER_BENCHMARK_PHASE="$OPTARG"
;;
q)
#echo "-q was triggered, Parameter: $OPTARG" >&2
QUERY_NUMBER="$OPTARG"
;;
s)
#echo "-t was triggered, Parameter: $OPTARG" >&2
USER_NUMBER_OF_PARALLEL_STREAMS="$OPTARG"
;;
t)
#echo "-s was triggered, Parameter: $OPTARG" >&2
USER_STREAM_NUMBER="$OPTARG"
;;
U)
#echo "-U was triggered, Parameter: $OPTARG" >&2
USER_EXPERT_MODE="1"
;;
v)
#echo "-v was triggered, Parameter: $OPTARG" >&2
USER_POPULATE_FILE="$OPTARG"
;;
w)
#echo "-w was triggered, Parameter: $OPTARG" >&2
USER_REFRESH_FILE="$OPTARG"
;;
y)
#echo "-y was triggered, Parameter: $OPTARG" >&2
USER_QUERY_PARAMS_FILE="$OPTARG"
;;
z)
#echo "-z was triggered, Parameter: $OPTARG" >&2
USER_ENGINE_SETTINGS_FILE="$OPTARG"
;;
# driver options
a)
#echo "-a was triggered, Parameter: $OPTARG" >&2
export USER_PRETEND_MODE="1"
;;
b)
#echo "-b was triggered, Parameter: $OPTARG" >&2
export USER_PRINT_STD_OUT="1"
;;
i)
#echo "-i was triggered, Parameter: $OPTARG" >&2
export USER_DRIVER_WORKLOAD="$OPTARG"
;;
j)
#echo "-j was triggered, Parameter: $OPTARG" >&2
export USER_DRIVER_QUERIES_TO_RUN="$OPTARG"
;;
?)
echo "Invalid option: -$OPTARG" >&2
exit 1
;;
:)
echo "Option -$OPTARG requires an argument." >&2
exit 1
;;
esac
done
```

設(shè)置全局變量仆嗦。如果用戶指定了某個(gè)參數(shù)的值耳幢,則采用該值,否則使用默認(rèn)值欧啤。

```bash
export BIG_BENCH_EXPERT_MODE="${USER_EXPERT_MODE:-"0"}"

export SHOW_HELP="${SHOW_HELP:-"0"}"
export BIG_BENCH_DATABASE="${USER_DATABASE:-"$BIG_BENCH_DEFAULT_DATABASE"}"
export BIG_BENCH_ENGINE="${USER_ENGINE:-"$BIG_BENCH_DEFAULT_ENGINE"}"
export BIG_BENCH_MAP_TASKS="${USER_MAP_TASKS:-"$BIG_BENCH_DEFAULT_MAP_TASKS"}"
export BIG_BENCH_SCALE_FACTOR="${USER_SCALE_FACTOR:-"$BIG_BENCH_DEFAULT_SCALE_FACTOR"}"
export BIG_BENCH_NUMBER_OF_PARALLEL_STREAMS="${USER_NUMBER_OF_PARALLEL_STREAMS:-"$BIG_BENCH_DEFAULT_NUMBER_OF_PARALLEL_STREAMS"}"
export BIG_BENCH_BENCHMARK_PHASE="${USER_BENCHMARK_PHASE:-"$BIG_BENCH_DEFAULT_BENCHMARK_PHASE"}"
export BIG_BENCH_STREAM_NUMBER="${USER_STREAM_NUMBER:-"0"}"
export BIG_BENCH_ENGINE_DIR="$BIG_BENCH_HOME/engines/$BIG_BENCH_ENGINE"
export BIG_BENCH_ENGINE_CONF_DIR="$BIG_BENCH_ENGINE_DIR/conf"
```

  1. 檢測(cè) -s -m -f -j的選項(xiàng)是否為數(shù)字

    if [ -n "`echo "$BIG_BENCH_MAP_TASKS" | sed -e 's/[0-9]*//g'`" ]
    then
      echo "$BIG_BENCH_MAP_TASKS is not a number"
    fi
    if [ -n "`echo "$BIG_BENCH_SCALE_FACTOR" | sed -e 's/[0-9]*//g'`" ]
    then
      echo "$BIG_BENCH_SCALE_FACTOR is not a number"
    fi
    if [ -n "`echo "$BIG_BENCH_NUMBER_OF_PARALLEL_STREAMS" | sed -e 's/[0-9]*//g'`" ]
    then
      echo "$BIG_BENCH_NUMBER_OF_PARALLEL_STREAMS is not a number"
    fi
    if [ -n "`echo "$BIG_BENCH_STREAM_NUMBER" | sed -e 's/[0-9]*//g'`" ]
    then
      echo "$BIG_BENCH_STREAM_NUMBER is not a number"
    fi
    
  2. 檢查引擎是否存在

    if [ ! -d "$BIG_BENCH_ENGINE_DIR" ]
    then
      echo "Engine directory $BIG_BENCH_ENGINE_DIR not found. Aborting script..."
      exit 1
    fi
    if [ ! -d "$BIG_BENCH_ENGINE_CONF_DIR" ]
    then
      echo "Engine configuration directory $BIG_BENCH_ENGINE_CONF_DIR not found. Aborting script..."
      exit 1
    fi
    
  3. 設(shè)置 engineSetting.conf 路徑并 source

    ENGINE_SETTINGS="$BIG_BENCH_ENGINE_CONF_DIR/engineSettings.conf"
    if [ ! -f "$ENGINE_SETTINGS" ]
    then
      echo "Engine settings file $ENGINE_SETTINGS not found"
      exit 1
    else
      source "$ENGINE_SETTINGS"
    fi
    
  4. 檢查module是否存在

    當(dāng)輸入某個(gè)module時(shí)睛藻,系統(tǒng)會(huì)先到$BIG_BENCH_ENGINE_BIN_DIR/目錄下去找該module是否存在,如果存在邢隧,就source "$MODULE"店印;如果該目錄下不存在指定的module,再到export MODULE="$BIG_BENCH_BIN_DIR/"目錄下找該module倒慧,如果存在按摘,就source "$MODULE";否則纫谅,輸出Module $MODULE not found, aborting script.

    export MODULE="$BIG_BENCH_ENGINE_BIN_DIR/$MODULE_NAME"
    if [ -f "$MODULE" ]
    then
      source "$MODULE"
    else
      export MODULE="$BIG_BENCH_BIN_DIR/$MODULE_NAME"
      if [ -f "$MODULE" ]
      then
        source "$MODULE"
      else
        echo "Module $MODULE not found, aborting script."
        exit 1
      fi
    fi
    
  5. 檢查module里的runModule()炫贤、helpModule ( )、runEngineCmd()方法是否有定義

    MODULE_RUN_METHOD="runModule"
    if ! declare -F "$MODULE_RUN_METHOD" > /dev/null 2>&1
    then
      echo "$MODULE_RUN_METHOD was not implemented, aborting script"
      exit 1
    fi
    
  6. 運(yùn)行module

    如果module是runBenchmark付秕,執(zhí)行
    runCmdWithErrorCheck "$MODULE_RUN_METHOD"
    也就是
    runCmdWithErrorCheck runModule()

由上可以看出兰珍,bigBench腳本主要執(zhí)行一些如設(shè)置環(huán)境變量、賦予權(quán)限询吴、檢查并解析輸入?yún)?shù)等基礎(chǔ)工作掠河,最終調(diào)用runBenchmarkrunModule()方法繼續(xù)往下執(zhí)行亮元。

runBenchmark

接下來(lái)看看runBenchmark腳本。

runBenchmark里有兩個(gè)函數(shù):helpModule ()runModule ()唠摹。

helpModule ()就是顯示幫助爆捞。

runModule ()是運(yùn)行runBenchmark模塊時(shí)真正調(diào)用的函數(shù)。該函數(shù)主要做四件事:

  1. 清除之前生成的日志
  2. 調(diào)用RunBigBench.jar來(lái)執(zhí)行
  3. logEnvInformation
  4. 將日志文件夾打包成zip

源碼如下:

runModule () {
  #check input parameters
  if [ "$BIG_BENCH_NUMBER_OF_PARALLEL_STREAMS" -le 0 ]
  then
    echo "The number of parallel streams -s must be greater than 0"
    return 1
  fi

  "${BIG_BENCH_BIN_DIR}/bigBench" cleanLogs -U $LIST_OF_USER_OPTIONS
  "$BIG_BENCH_JAVA" -jar "${BIG_BENCH_TOOLS_DIR}/RunBigBench.jar"
  "${BIG_BENCH_BIN_DIR}/bigBench" logEnvInformation -U $LIST_OF_USER_OPTIONS
  "${BIG_BENCH_BIN_DIR}/bigBench" zipLogs -U $LIST_OF_USER_OPTIONS
  return $?
}

相當(dāng)于運(yùn)行runBenchmark模塊時(shí)又調(diào)用了cleanLogs勾拉、logEnvInformation煮甥、zipLogs三個(gè)模塊以及RunBigBench.jar。其中RunBigBench.jar是TCPx-BB測(cè)試執(zhí)行的核心代碼藕赞,用Java語(yǔ)言編寫(xiě)苛秕。接下來(lái)分析RunBigBench.jar源碼。

runModule()

runModule()函數(shù)用來(lái)執(zhí)行某個(gè)module找默。我們已知,執(zhí)行某個(gè)module需要切換到主目錄下的bin目錄吼驶,然后執(zhí)行:

./bigBench module_name arguments

在runModule()函數(shù)里惩激,cmdLine用來(lái)生成如上命令。

ArrayList cmdLine = new ArrayList();
cmdLine.add("bash");
cmdLine.add(this.runScript);
cmdLine.add(benchmarkPhase.getRunModule());
cmdLine.addAll(arguments);

其中蟹演,this.runScript為:

this.runScript = (String)env.get("BIG_BENCH_BIN_DIR") + "/bigBench";

benchmarkPhase.getRunModule()用來(lái)獲得需要執(zhí)行的module风钻。

arguments為用戶輸入的參數(shù)。

至此酒请,cmdLine為:

bash $BIG_BENCH_BIN_DIR/bigBench module_name arguments

那么骡技,怎么讓系統(tǒng)執(zhí)行該bash命令呢?答案是調(diào)用runCmd()方法羞反。

boolean successful = this.runCmd(this.homeDir, benchmarkPhase.isPrintStdOut(), (String[])cmdLine.toArray(new String[0]));

接下來(lái)介紹rumCmd()方法

runCmd()

runCmd()方法通過(guò)ProcessBuilder來(lái)創(chuàng)建一個(gè)操作系統(tǒng)進(jìn)程布朦,并用該進(jìn)程執(zhí)行以上的bash命令。

ProcessBuilder還可以設(shè)置工作目錄和環(huán)境昼窗。

ProcessBuilder pb = new ProcessBuilder(command);
pb.directory(new File(workingDirectory));
Process p = null;
---
p = pb.start();

getQueryList()

getQueryList()用來(lái)獲得需要執(zhí)行的查詢列表是趴。從$BIG_BENCH_LOGS_DIR/bigBench.properties文件中讀取。與$BIG_BENCH_HOME/conf/bigBench.properties內(nèi)容一致澄惊。

bigBench.propertiespower_test_0=1-30規(guī)定了powter_test_0階段需要執(zhí)行的查詢及其順序唆途。

可以用區(qū)間如 5-12 或者單個(gè)數(shù)字如 21 表示,中間用 , 隔開(kāi)掸驱。

power_test_0=28-25,2-5,10,22,30

表示powter_test_0階段需要執(zhí)行的查詢及其順序?yàn)椋?code>28,27,26,25,2,3,4,5,10,22,30

如果想讓30個(gè)查詢按順序執(zhí)行肛搬,則:

power_test_0=1-30

獲得查詢列表的源碼如下:

    private List<Integer> getQueryList(BigBench.BenchmarkPhase benchmarkPhase, int streamNumber) {
        String SHUFFLED_NAME_PATTERN = "shuffledQueryList";
        BigBench.BenchmarkPhase queryOrderBasicPhase = BigBench.BenchmarkPhase.POWER_TEST;
        String propertyKey = benchmarkPhase.getQueryListProperty(streamNumber);
        boolean queryOrderCached = benchmarkPhase.isQueryOrderCached();
        if(queryOrderCached && this.queryListCache.containsKey(propertyKey)) {
            return new ArrayList((Collection)this.queryListCache.get(propertyKey));
        } else {
            Object queryList;
            String basicPhaseNamePattern;
            if(!this.properties.containsKey(propertyKey)) {
                if(benchmarkPhase.isQueryOrderRandom()) {
                    if(!this.queryListCache.containsKey("shuffledQueryList")) {
                        basicPhaseNamePattern = queryOrderBasicPhase.getQueryListProperty(0);
                        if(!this.properties.containsKey(basicPhaseNamePattern)) {
                            throw new IllegalArgumentException("Property " + basicPhaseNamePattern + " is not defined, but is the basis for shuffling the query list.");
                        }

                        this.queryListCache.put("shuffledQueryList", this.getQueryList(queryOrderBasicPhase, 0));
                    }

                    queryList = (List)this.queryListCache.get("shuffledQueryList");
                    this.shuffleList((List)queryList, this.rnd);
                } else {
                    queryList = this.getQueryList(queryOrderBasicPhase, 0);
                }
            } else {
                queryList = new ArrayList();
                String[] var11;
                int var10 = (var11 = this.properties.getProperty(propertyKey).split(",")).length;

                label65:
                for(int var9 = 0; var9 < var10; ++var9) {
                    basicPhaseNamePattern = var11[var9];
                    String[] queryRange = basicPhaseNamePattern.trim().split("-");
                    switch(queryRange.length) {
                    case 1:
                        ((List)queryList).add(Integer.valueOf(Integer.parseInt(queryRange[0].trim())));
                        break;
                    case 2:
                        int startQuery = Integer.parseInt(queryRange[0]);
                        int endQuery = Integer.parseInt(queryRange[1]);
                        int i;
                        if(startQuery > endQuery) {
                            i = startQuery;

                            while(true) {
                                if(i < endQuery) {
                                    continue label65;
                                }

                                ((List)queryList).add(Integer.valueOf(i));
                                --i;
                            }
                        } else {
                            i = startQuery;

                            while(true) {
                                if(i > endQuery) {
                                    continue label65;
                                }

                                ((List)queryList).add(Integer.valueOf(i));
                                ++i;
                            }
                        }
                    default:
                        throw new IllegalArgumentException("Query numbers must be in the form X or X-Y, comma separated.");
                    }
                }
            }

            if(queryOrderCached) {
                this.queryListCache.put(propertyKey, new ArrayList((Collection)queryList));
            }

            return new ArrayList((Collection)queryList);
        }
    }

parseEnvironment()

parseEnvironment()讀取系統(tǒng)的環(huán)境變量并解析。

Map env = System.getenv();
this.version = (String)env.get("BIG_BENCH_VERSION");
this.homeDir = (String)env.get("BIG_BENCH_HOME");
this.confDir = (String)env.get("BIG_BENCH_CONF_DIR");
this.runScript = (String)env.get("BIG_BENCH_BIN_DIR") + "/bigBench";
this.datagenDir = (String)env.get("BIG_BENCH_DATA_GENERATOR_DIR");
this.logDir = (String)env.get("BIG_BENCH_LOGS_DIR");
this.dataGenLogFile = (String)env.get("BIG_BENCH_DATAGEN_STAGE_LOG");
this.loadLogFile = (String)env.get("BIG_BENCH_LOADING_STAGE_LOG");
this.engine = (String)env.get("BIG_BENCH_ENGINE");
this.database = (String)env.get("BIG_BENCH_DATABASE");
this.mapTasks = (String)env.get("BIG_BENCH_MAP_TASKS");
this.numberOfParallelStreams = Integer.parseInt((String)env.get("BIG_BENCH_NUMBER_OF_PARALLEL_STREAMS"));
this.scaleFactor = Long.parseLong((String)env.get("BIG_BENCH_SCALE_FACTOR"));
this.stopAfterFailure = ((String)env.get("BIG_BENCH_STOP_AFTER_FAILURE")).equals("1");

并自動(dòng)在用戶指定的參數(shù)后面加上 -U (解鎖專家模式)

this.userArguments.add("-U");

如果用戶指定了 PRETEND_MODE毕贼、PRINT_STD_OUT温赔、WORKLOADQUERIES_TO_RUN鬼癣,則以用戶指定的參數(shù)為準(zhǔn)让腹,否則使用默認(rèn)值远剩。

if(env.containsKey("USER_PRETEND_MODE")) {
    this.properties.setProperty("pretend_mode", (String)env.get("USER_PRETEND_MODE"));
}

if(env.containsKey("USER_PRINT_STD_OUT")) {
   this.properties.setProperty("show_command_stdout", (String)env.get("USER_PRINT_STD_OUT"));
}

if(env.containsKey("USER_DRIVER_WORKLOAD")) {
   this.properties.setProperty("workload", (String)env.get("USER_DRIVER_WORKLOAD"));
}

if(env.containsKey("USER_DRIVER_QUERIES_TO_RUN")) {
    this.properties.setProperty(BigBench.BenchmarkPhase.POWER_TEST.getQueryListProperty(0), (String)env.get("USER_DRIVER_QUERIES_TO_RUN"));
}

讀取 workload 并賦值 benchmarkPhases。如果 workload 里不包含 BENCHMARK_STARTBENCHMARK_STOP骇窍,自動(dòng)在 benchmarkPhases 的首位和末位分別加上 BENCHMARK_STARTBENCHMARK_STOP瓜晤。

this.benchmarkPhases = new ArrayList();
Iterator var7 = Arrays.asList(this.properties.getProperty("workload").split(",")).iterator();
    
while(var7.hasNext()) {
    String benchmarkPhase = (String)var7.next();
    this.benchmarkPhases.add(BigBench.BenchmarkPhase.valueOf(benchmarkPhase.trim()));
}
    
if(!this.benchmarkPhases.contains(BigBench.BenchmarkPhase.BENCHMARK_START)) {
    this.benchmarkPhases.add(0, BigBench.BenchmarkPhase.BENCHMARK_START);
}
    
if(!this.benchmarkPhases.contains(BigBench.BenchmarkPhase.BENCHMARK_STOP)) {
    this.benchmarkPhases.add(BigBench.BenchmarkPhase.BENCHMARK_STOP);
}

run()

run() 方法是 RunBigBench.jar 里核心的方法。所有的執(zhí)行都是通過(guò) run() 方法調(diào)用的腹纳。比如 runQueries()痢掠、runModule()generateData()等嘲恍。runQueries()足画、runModule()generateData() 又通過(guò)調(diào)用 runCmd() 方法來(lái)創(chuàng)建操作系統(tǒng)進(jìn)程佃牛,執(zhí)行bash命令淹辞,調(diào)用bash腳本。

run() 方法里通過(guò)一個(gè) while 循環(huán)來(lái)逐一執(zhí)行 workload 里的每一個(gè) benchmarkPhase俘侠。 不同的 benchmarkPhase 會(huì)調(diào)用 runQueries()象缀、runModule()generateData()...中的不同方法爷速。

try {
long e = 0L;
this.log.finer("Benchmark phases: " + this.benchmarkPhases);
Iterator startCheckpoint = this.benchmarkPhases.iterator();

long throughputStart;
while(startCheckpoint.hasNext()) {
    BigBench.BenchmarkPhase children = (BigBench.BenchmarkPhase)startCheckpoint.next();
    if(children.isPhaseDone()) {
        this.log.info("The phase " + children.name() + " was already performed earlier. Skipping this phase");
    } else {
        try {
            switch($SWITCH_TABLE$io$bigdatabenchmark$v1$driver$BigBench$BenchmarkPhase()[children.ordinal()]) {
            case 1:
            case 20:
                throw new IllegalArgumentException("The value " + children.name() + " is only used internally.");
            case 2:
                this.log.info(children.getConsoleMessage());
                e = System.currentTimeMillis();
                break;
            case 3:
                if(!BigBench.BenchmarkPhase.BENCHMARK_START.isPhaseDone()) {
                    throw new IllegalArgumentException("Error: Cannot stop the benchmark before starting it");
                }

                throughputStart = System.currentTimeMillis();
                this.log.info(String.format("%-55s finished. Time: %25s", new Object[]{children.getConsoleMessage(), BigBench.Helper.formatTime(throughputStart - e)}));
                this.logTreeRoot.setCheckpoint(new BigBench.Checkpoint(BigBench.BenchmarkPhase.BENCHMARK, -1L, -1L, e, throughputStart, this.logTreeRoot.isSuccessful()));
                break;
            case 4:
            case 15:
            case 18:
            case 22:
            case 27:
            case 28:
            case 29:
                this.runModule(children, this.userArguments);
                break;
            case 5:
            case 10:
            case 11:
                this.runQueries(children, 1, validationArguments);
                break;
            case 6:
            case 9:
                this.runModule(children, validationArguments);
                break;
            case 7:
                this.generateData(children, false, validationArguments);
                break;
            case 8:
                this.generateData(children, true, validationArguments);
                break;
            case 12:
            case 19:
            case 24:
                this.runQueries(children, 1, this.userArguments);
                break;
            case 13:
            case 14:
            case 21:
            case 23:
            case 25:
            case 26:
                this.runQueries(children, this.numberOfParallelStreams, this.userArguments);
                break;
            case 16:
                this.generateData(children, false, this.userArguments);
                break;
            case 17:
                this.generateData(children, true, this.userArguments);
            }

            children.setPhaseDone(true);
        } catch (IOException var21) {
            this.log.info("==============\nBenchmark run terminated\nReason: An error occured while running a command in phase " + children + "\n==============");
            var21.printStackTrace();
            if(this.stopAfterFailure || children.mustSucceed()) {
                break;
            }
        }
    }
}

這里的 case 1-29 并不是 1-29 條查詢央星,而是枚舉類型里的 1-29 個(gè) benmarkPhase 。如下所示:

private static enum BenchmarkPhase {
BENCHMARK((String)null, "benchmark", false, false, false, false, "BigBench benchmark"),
BENCHMARK_START((String)null, "benchmark_start", false, false, false, false, "BigBench benchmark: Start"),
BENCHMARK_STOP((String)null, "benchmark_stop", false, false, false, false, "BigBench benchmark: Stop"),
CLEAN_ALL("cleanAll", "clean_all", false, false, false, false, "BigBench clean all"),
ENGINE_VALIDATION_CLEAN_POWER_TEST("cleanQuery", "engine_validation_power_test", false, false, false, false, "BigBench engine validation: Clean power test queries"),
ENGINE_VALIDATION_CLEAN_LOAD_TEST("cleanMetastore", "engine_validation_metastore", false, false, false, false, "BigBench engine validation: Clean metastore"),
ENGINE_VALIDATION_CLEAN_DATA("cleanData", "engine_validation_data", false, false, false, false, "BigBench engine validation: Clean data"),
ENGINE_VALIDATION_DATA_GENERATION("dataGen", "engine_validation_data", false, false, false, true, "BigBench engine validation: Data generation"),
ENGINE_VALIDATION_LOAD_TEST("populateMetastore", "engine_validation_metastore", false, false, false, true, "BigBench engine validation: Populate metastore"),
ENGINE_VALIDATION_POWER_TEST("runQuery", "engine_validation_power_test", false, false, false, false, "BigBench engine validation: Power test"),
ENGINE_VALIDATION_RESULT_VALIDATION("validateQuery", "engine_validation_power_test", false, false, true, false, "BigBench engine validation: Check all query results"),
CLEAN_POWER_TEST("cleanQuery", "power_test", false, false, false, false, "BigBench clean: Clean power test queries"),
CLEAN_THROUGHPUT_TEST_1("cleanQuery", "throughput_test_1", false, false, false, false, "BigBench clean: Clean first throughput test queries"),
CLEAN_THROUGHPUT_TEST_2("cleanQuery", "throughput_test_2", false, false, false, false, "BigBench clean: Clean second throughput test queries"),
CLEAN_LOAD_TEST("cleanMetastore", "metastore", false, false, false, false, "BigBench clean: Load test"),
CLEAN_DATA("cleanData", "data", false, false, false, false, "BigBench clean: Data"),
DATA_GENERATION("dataGen", "data", false, false, false, true, "BigBench preparation: Data generation"),
LOAD_TEST("populateMetastore", "metastore", false, false, false, true, "BigBench phase 1: Load test"),
POWER_TEST("runQuery", "power_test", false, true, false, false, "BigBench phase 2: Power test"),
THROUGHPUT_TEST((String)null, "throughput_test", false, false, false, false, "BigBench phase 3: Throughput test"),
THROUGHPUT_TEST_1("runQuery", "throughput_test_1", true, true, false, false, "BigBench phase 3: First throughput test run"),
THROUGHPUT_TEST_REFRESH("refreshMetastore", "throughput_test_refresh", false, false, false, false, "BigBench phase 3: Throughput test data refresh"),
THROUGHPUT_TEST_2("runQuery", "throughput_test_2", true, true, false, false, "BigBench phase 3: Second throughput test run"),
VALIDATE_POWER_TEST("validateQuery", "power_test", false, false, true, false, "BigBench validation: Power test results"),
VALIDATE_THROUGHPUT_TEST_1("validateQuery", "throughput_test_1", false, false, true, false, "BigBench validation: First throughput test results"),
VALIDATE_THROUGHPUT_TEST_2("validateQuery", "throughput_test_2", false, false, true, false, "BigBench validation: Second throughput test results"),
SHOW_TIMES("showTimes", "show_times", false, false, true, false, "BigBench: show query times"),
SHOW_ERRORS("showErrors", "show_errors", false, false, true, false, "BigBench: show query errors"),
SHOW_VALIDATION("showValidation", "show_validation", false, false, true, false, "BigBench: show query validation results");

private String runModule;
private String namePattern;
private boolean queryOrderRandom;
private boolean queryOrderCached;
private boolean printStdOut;
private boolean mustSucceed;
private String consoleMessage;
private boolean phaseDone;

private BenchmarkPhase(String runModule, String namePattern, boolean queryOrderRandom, boolean queryOrderCached, boolean printStdOut, boolean mustSucceed, String consoleMessage) {
    this.runModule = runModule;
    this.namePattern = namePattern;
    this.queryOrderRandom = queryOrderRandom;
    this.queryOrderCached = queryOrderCached;
    this.printStdOut = printStdOut;
    this.mustSucceed = mustSucceed;
    this.consoleMessage = consoleMessage;
    this.phaseDone = false;
}       

3對(duì)應(yīng) BENCHMARK_STOP惫东,4對(duì)應(yīng) CLEAN_ALL,29對(duì)應(yīng) SHOW_VALIDATION莉给,依此類推...

可以看出:

CLEAN_ALL、CLEAN_LOAD_TEST廉沮、LOAD_TEST颓遏、THROUGHPUT_TEST_REFRESH、SHOW_TIMES滞时、SHOW_ERRORS州泊、SHOW_VALIDATION等benchmarkPhases調(diào)用的是

this.runModule(children, this.userArguments);

方法是 runModule ,參數(shù)是 this.userArguments漂洋。

ENGINE_VALIDATION_CLEAN_POWER_TEST遥皂、ENGINE_VALIDATION_POWER_TEST、ENGINE_VALIDATION_RESULT_VALIDATION 調(diào)用的是

this.runQueries(children, 1, validationArguments);

方法是 runQueries 刽漂,參數(shù)是 1(stream number) 和 validationArguments演训。

ENGINE_VALIDATION_CLEAN_LOAD_TESTENGINE_VALIDATION_LOAD_TEST 調(diào)用的是

this.runModule(children, validationArguments);

ENGINE_VALIDATION_CLEAN_DATA 調(diào)用的是

this.generateData(children, false, validationArguments);

ENGINE_VALIDATION_DATA_GENERATION 調(diào)用的是

this.generateData(children, true, validationArguments);

CLEAN_POWER_TESTPOWER_TEST贝咙、VALIDATE_POWER_TEST 調(diào)用的是

this.runQueries(children, 1, this.userArguments);

CLEAN_THROUGHPUT_TEST_1``CLEAN_THROUGHPUT_TEST_2``THROUGHPUT_TEST_1``THROUGHPUT_TEST_2``VALIDATE_THROUGHPUT_TEST_1 VALIDATE_THROUGHPUT_TEST_2 調(diào)用的是

this.runQueries(children, this.numberOfParallelStreams, this.userArguments);

CLEAN_DATA 調(diào)用的是

this.generateData(children, false, this.userArguments);

DATA_GENERATION 調(diào)用的是

this.generateData(children, true, this.userArguments);

總結(jié)一下以上的方法調(diào)用可以發(fā)現(xiàn):

  • ENGINE_VALIDATION 相關(guān)的benchmarkPhase用的參數(shù)都是 validationArguments样悟。其余用的是 userArguments( validationArguments 和 userArguments 唯一的區(qū)別是 validationArguments 的 SCALE_FACTOR 恒為1)
  • POWER_TEST 相關(guān)的都是調(diào)用 runQueries() 方法,因?yàn)?POWER_TEST 就是執(zhí)行SQL查詢
  • CLEAN_DATA DATA_GENERATION 相關(guān)的都是調(diào)用 generateData() 方法
  • LOAD_TEST SHOW 相關(guān)的都是調(diào)用 runModule() 方法

benchmarkPhase 和 module 對(duì)應(yīng)關(guān)系

具體每個(gè) benchmarkPhasemodule(執(zhí)行的腳本)的對(duì)應(yīng)關(guān)系如下:

CLEAN_ALL -> "cleanAll"
ENGINE_VALIDATION_CLEAN_POWER_TEST -> "cleanQuery"
ENGINE_VALIDATION_CLEAN_LOAD_TEST -> "cleanMetastore",
ENGINE_VALIDATION_CLEAN_DATA -> "cleanData"
ENGINE_VALIDATION_DATA_GENERATION -> "dataGen"
ENGINE_VALIDATION_LOAD_TEST -> "populateMetastore"
ENGINE_VALIDATION_POWER_TEST -> "runQuery"
ENGINE_VALIDATION_RESULT_VALIDATION -> "validateQuery"
CLEAN_POWER_TEST -> "cleanQuery"
CLEAN_THROUGHPUT_TEST_1 -> "cleanQuery"
CLEAN_THROUGHPUT_TEST_2 -> "cleanQuery"
CLEAN_LOAD_TEST -> "cleanMetastore"
CLEAN_DATA -> "cleanData"
DATA_GENERATION -> "dataGen"
LOAD_TEST -> "populateMetastore"
POWER_TEST -> "runQuery"
THROUGHPUT_TEST -> (String)null
THROUGHPUT_TEST_1 -> "runQuery"
THROUGHPUT_TEST_REFRESH -> "refreshMetastore"
THROUGHPUT_TEST_2 -> "runQuery"
VALIDATE_POWER_TEST -> "validateQuery"
VALIDATE_THROUGHPUT_TEST_1 -> "validateQuery"
VALIDATE_THROUGHPUT_TEST_2 -> "validateQuery"
SHOW_TIMES -> "showTimes"
SHOW_ERRORS -> "showErrors"
SHOW_VALIDATION -> "showValidation"

當(dāng)執(zhí)行某個(gè) benchmarkPhase 時(shí)會(huì)去調(diào)用如上該 benchmarkPhase 對(duì)應(yīng)的 module (腳本位于 $BENCH_MARK_HOME/engines/hive/bin 目錄下)

cmdLine.add(benchmarkPhase.getRunModule());

程序調(diào)用流程

bigBench.png

接下來(lái)介紹每個(gè)module的功能

module

cleanAll

1. DROP DATABASE
2. 刪除hdfs上的源數(shù)據(jù)
echo "dropping database (with all tables)"
runCmdWithErrorCheck runEngineCmd -e "DROP DATABASE IF EXISTS $BIG_BENCH_DATABASE CASCADE;"
echo "cleaning ${BIG_BENCH_HDFS_ABSOLUTE_HOME}"
hadoop fs -rm -r -f -skipTrash "${BIG_BENCH_HDFS_ABSOLUTE_HOME}"

cleanQuery

1. 刪除對(duì)應(yīng)的 Query 生成的臨時(shí)表
2. 刪除對(duì)應(yīng)的 Query 生成的結(jié)果表
runCmdWithErrorCheck runEngineCmd -e "DROP TABLE IF EXISTS $TEMP_TABLE1; DROP TABLE IF EXISTS $TEMP_TABLE2; DROP TABLE IF EXISTS $RESULT_TABLE;"
return $?

cleanMetastore

1. 調(diào)用 `dropTables.sql` 將23張表依次DROP
echo "cleaning metastore tables"
runCmdWithErrorCheck runEngineCmd -f "$BIG_BENCH_CLEAN_METASTORE_FILE"
export BIG_BENCH_CLEAN_METASTORE_FILE="$BIG_BENCH_CLEAN_DIR/dropTables.sql"

dropTables.sql 將23張表依次DROP,源碼如下:

DROP TABLE IF EXISTS ${hiveconf:customerTableName};
DROP TABLE IF EXISTS ${hiveconf:customerAddressTableName};
DROP TABLE IF EXISTS ${hiveconf:customerDemographicsTableName};
DROP TABLE IF EXISTS ${hiveconf:dateTableName};
DROP TABLE IF EXISTS ${hiveconf:householdDemographicsTableName};
DROP TABLE IF EXISTS ${hiveconf:incomeTableName};
DROP TABLE IF EXISTS ${hiveconf:itemTableName};
DROP TABLE IF EXISTS ${hiveconf:promotionTableName};
DROP TABLE IF EXISTS ${hiveconf:reasonTableName};
DROP TABLE IF EXISTS ${hiveconf:shipModeTableName};
DROP TABLE IF EXISTS ${hiveconf:storeTableName};
DROP TABLE IF EXISTS ${hiveconf:timeTableName};
DROP TABLE IF EXISTS ${hiveconf:warehouseTableName};
DROP TABLE IF EXISTS ${hiveconf:webSiteTableName};
DROP TABLE IF EXISTS ${hiveconf:webPageTableName};
DROP TABLE IF EXISTS ${hiveconf:inventoryTableName};
DROP TABLE IF EXISTS ${hiveconf:storeSalesTableName};
DROP TABLE IF EXISTS ${hiveconf:storeReturnsTableName};
DROP TABLE IF EXISTS ${hiveconf:webSalesTableName};
DROP TABLE IF EXISTS ${hiveconf:webReturnsTableName};
DROP TABLE IF EXISTS ${hiveconf:marketPricesTableName};
DROP TABLE IF EXISTS ${hiveconf:clickstreamsTableName};
DROP TABLE IF EXISTS ${hiveconf:reviewsTableName};

cleanData

1. 刪除hdfs上 /user/root/benchmarks/bigbench/data 目錄
2. 刪除hdfs上 /user/root/benchmarks/bigbench/data_refresh 目錄
echo "cleaning ${BIG_BENCH_HDFS_ABSOLUTE_INIT_DATA_DIR}"
hadoop fs -rm -r -f -skipTrash "${BIG_BENCH_HDFS_ABSOLUTE_INIT_DATA_DIR}"
echo "cleaning ${BIG_BENCH_HDFS_ABSOLUTE_REFRESH_DATA_DIR}"
hadoop fs -rm -r -f -skipTrash "${BIG_BENCH_HDFS_ABSOLUTE_REFRESH_DATA_DIR}"

dataGen

1. 創(chuàng)建目錄 /user/root/benchmarks/bigbench/data 并賦予權(quán)限
2. 創(chuàng)建目錄 /user/root/benchmarks/bigbench/data_refresh 并賦予權(quán)限
3. 調(diào)用 HadoopClusterExec.jar 和 pdgf.jar 生成 base data 到 /user/root/benchmarks/bigbench/data 目錄下
4. 調(diào)用 HadoopClusterExec.jar 和 pdgf.jar 生成 refresh data 到 /user/root/benchmarks/bigbench/data_refresh 目錄下

創(chuàng)建目錄 /user/root/benchmarks/bigbench/data 并賦予權(quán)限

runCmdWithErrorCheck hadoop fs -mkdir -p "${BIG_BENCH_HDFS_ABSOLUTE_INIT_DATA_DIR}"
runCmdWithErrorCheck hadoop fs -chmod 777 "${BIG_BENCH_HDFS_ABSOLUTE_INIT_DATA_DIR}"

創(chuàng)建目錄 /user/root/benchmarks/bigbench/data_refresh 并賦予權(quán)限

runCmdWithErrorCheck hadoop fs -mkdir -p "${BIG_BENCH_HDFS_ABSOLUTE_REFRESH_DATA_DIR}"
runCmdWithErrorCheck hadoop fs -chmod 777 "${BIG_BENCH_HDFS_ABSOLUTE_REFRESH_DATA_DIR}"

調(diào)用 HadoopClusterExec.jar 和 pdgf.jar 生成 base data

runCmdWithErrorCheck hadoop jar "${BIG_BENCH_TOOLS_DIR}/HadoopClusterExec.jar" -archives "${PDGF_ARCHIVE_PATH}" ${BIG_BENCH_DATAGEN_HADOOP_EXEC_DEBUG} -taskFailOnNonZeroReturnValue -execCWD "${PDGF_DISTRIBUTED_NODE_DIR}" ${HadoopClusterExecOptions} -exec ${BIG_BENCH_DATAGEN_HADOOP_JVM_ENV} -cp "${HADOOP_CP}:pdgf.jar" ${PDGF_CLUSTER_CONF} pdgf.Controller -nc HadoopClusterExec.tasks -nn HadoopClusterExec.taskNumber -ns -c -sp REFRESH_PHASE 0 -o "'${BIG_BENCH_HDFS_ABSOLUTE_INIT_DATA_DIR}/'+table.getName()+'/'" ${BIG_BENCH_DATAGEN_HADOOP_OPTIONS} -s ${BIG_BENCH_DATAGEN_TABLES} ${PDGF_OPTIONS} "$@" 2>&1 | tee -a "$BIG_BENCH_DATAGEN_STAGE_LOG" 2>&1

調(diào)用 HadoopClusterExec.jar 和 pdgf.jar 生成 refresh data

runCmdWithErrorCheck hadoop jar "${BIG_BENCH_TOOLS_DIR}/HadoopClusterExec.jar" -archives "${PDGF_ARCHIVE_PATH}" ${BIG_BENCH_DATAGEN_HADOOP_EXEC_DEBUG} -taskFailOnNonZeroReturnValue -execCWD "${PDGF_DISTRIBUTED_NODE_DIR}" ${HadoopClusterExecOptions} -exec ${BIG_BENCH_DATAGEN_HADOOP_JVM_ENV} -cp "${HADOOP_CP}:pdgf.jar" ${PDGF_CLUSTER_CONF} pdgf.Controller -nc HadoopClusterExec.tasks -nn HadoopClusterExec.taskNumber -ns -c -sp REFRESH_PHASE 1 -o "'${BIG_BENCH_HDFS_ABSOLUTE_REFRESH_DATA_DIR}/'+table.getName()+'/'" ${BIG_BENCH_DATAGEN_HADOOP_OPTIONS} -s ${BIG_BENCH_DATAGEN_TABLES} ${PDGF_OPTIONS} "$@" 2>&1 | tee -a "$BIG_BENCH_DATAGEN_STAGE_LOG" 2>&1 

populateMetastore

該過(guò)程是真正的創(chuàng)建數(shù)據(jù)庫(kù)表的過(guò)程。建表的過(guò)程調(diào)用的是 $BENCH_MARK_HOME/engines/hive/population/ 目錄下的 hiveCreateLoad.sql ,通過(guò)該sql文件來(lái)建數(shù)據(jù)庫(kù)表窟她。

  1. 從 /user/root/benchmarks/bigbench/data 路徑下讀取 .dat 的原始數(shù)據(jù)陈症,生成 TEXTFILE 格式的外部臨時(shí)表
  2. select * from 臨時(shí)表 來(lái)創(chuàng)建最終的 ORC 格式的數(shù)據(jù)庫(kù)表
  3. 刪除外部臨時(shí)表。

從 /user/root/benchmarks/bigbench/data 路徑下讀取 .dat 的原始數(shù)據(jù)震糖,生成 TEXTFILE 格式的外部臨時(shí)表

DROP TABLE IF EXISTS ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix};
CREATE EXTERNAL TABLE ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix}
  ( c_customer_sk             bigint              --not null
  , c_customer_id             string              --not null
  , c_current_cdemo_sk        bigint
  , c_current_hdemo_sk        bigint
  , c_current_addr_sk         bigint
  , c_first_shipto_date_sk    bigint
  , c_first_sales_date_sk     bigint
  , c_salutation              string
  , c_first_name              string
  , c_last_name               string
  , c_preferred_cust_flag     string
  , c_birth_day               int
  , c_birth_month             int
  , c_birth_year              int
  , c_birth_country           string
  , c_login                   string
  , c_email_address           string
  , c_last_review_date        string
  )
  ROW FORMAT DELIMITED FIELDS TERMINATED BY '${hiveconf:fieldDelimiter}'
  STORED AS TEXTFILE LOCATION '${hiveconf:hdfsDataPath}/${hiveconf:customerTableName}'
;

select * from 臨時(shí)表 來(lái)創(chuàng)建最終的 ORC 格式的數(shù)據(jù)庫(kù)表

DROP TABLE IF EXISTS ${hiveconf:customerTableName};
CREATE TABLE ${hiveconf:customerTableName}
STORED AS ${hiveconf:tableFormat}
AS
SELECT * FROM ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix}
;

刪除外部臨時(shí)表

DROP TABLE ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix};

runQuery

1. runQuery 調(diào)用每個(gè)query下的 run.sh 里的 `query_run_main_method()` 方法
2. `query_run_main_method()` 調(diào)用 `runEngineCmd` 來(lái)執(zhí)行query腳本(qxx.sql)

runQuery 調(diào)用每個(gè)query下的 run.sh 里的 query_run_main_method() 方法

QUERY_MAIN_METHOD="query_run_main_method"
-----------------------------------------
"$QUERY_MAIN_METHOD" 2>&1 | tee -a "$LOG_FILE_NAME" 2>&1

query_run_main_method() 調(diào)用 runEngineCmd 來(lái)執(zhí)行query腳本(qxx.sql)

query_run_main_method () {
    QUERY_SCRIPT="$QUERY_DIR/$QUERY_NAME.sql"
    if [ ! -r "$QUERY_SCRIPT" ]
    then
        echo "SQL file $QUERY_SCRIPT can not be read."
        exit 1
    fi

    runCmdWithErrorCheck runEngineCmd -f "$QUERY_SCRIPT"
    return $?
}

一般情況下 query_run_main_method () 方法只是執(zhí)行對(duì)應(yīng)的query腳本录肯,但是像 q05、q20... 這些查詢吊说,用到了機(jī)器學(xué)習(xí)算法论咏,所以在執(zhí)行對(duì)應(yīng)的query腳本后會(huì)把生成的結(jié)果表作為輸入,然后調(diào)用執(zhí)行機(jī)器學(xué)習(xí)算法(如聚類颁井、邏輯回歸)的jar包繼續(xù)執(zhí)行厅贪,得到最終的結(jié)果。

runEngineCmd () {
  if addInitScriptsToParams
  then
    "$BINARY" "${BINARY_PARAMS[@]}" "${INIT_PARAMS[@]}" "$@"
  else
    return 1
  fi
}
--------------------------
BINARY="/usr/bin/hive"
BINARY_PARAMS+=(--hiveconf BENCHMARK_PHASE=$BIG_BENCH_BENCHMARK_PHASE --hiveconf STREAM_NUMBER=$BIG_BENCH_STREAM_NUMBER --hiveconf QUERY_NAME=$QUERY_NAME --hiveconf QUERY_DIR=$QUERY_DIR --hiveconf RESULT_TABLE=$RESULT_TABLE --hiveconf RESULT_DIR=$RESULT_DIR --hiveconf TEMP_TABLE=$TEMP_TABLE --hiveconf TEMP_DIR=$TEMP_DIR --hiveconf TABLE_PREFIX=$TABLE_PREFIX)
INIT_PARAMS=(-i "$BIG_BENCH_QUERY_PARAMS_FILE" -i "$BIG_BENCH_ENGINE_SETTINGS_FILE")
INIT_PARAMS+=(-i "$LOCAL_QUERY_ENGINE_SETTINGS_FILE")

if [ -n "$USER_QUERY_PARAMS_FILE" ]
then
if [ -r "$USER_QUERY_PARAMS_FILE" ]
then
  echo "User defined query parameter file found. Adding $USER_QUERY_PARAMS_FILE to hive init."
  INIT_PARAMS+=(-i "$USER_QUERY_PARAMS_FILE")
else
  echo "User query parameter file $USER_QUERY_PARAMS_FILE can not be read."
  return 1
fi
fi

if [ -n "$USER_ENGINE_SETTINGS_FILE" ]
then
if [ -r "$USER_ENGINE_SETTINGS_FILE" ]
then
  echo "User defined engine settings file found. Adding $USER_ENGINE_SETTINGS_FILE to hive init."
  INIT_PARAMS+=(-i "$USER_ENGINE_SETTINGS_FILE")
else
  echo "User hive settings file $USER_ENGINE_SETTINGS_FILE can not be read."
  return 1
fi
fi
return 0

validateQuery

1. 調(diào)用每個(gè)query下的 run.sh 里的 `query_run_validate_method()` 方法
2. `query_run_validate_method()` 比較 `$BENCH_MARK_HOME/engines/hive/queries/qxx/results/qxx-result` 和hdfs上 `/user/root/benchmarks/bigbench/queryResults/qxx_hive_${BIG_BENCH_BENCHMARK_PHASE}_${BIG_BENCH_STREAM_NUMBER}_result` 兩個(gè)文件雅宾,如果一樣养涮,則驗(yàn)證通過(guò),否則驗(yàn)證失敗眉抬。
if diff -q "$VALIDATION_RESULTS_FILENAME" <(hadoop fs -cat "$RESULT_DIR/*")
then
    echo "Validation of $VALIDATION_RESULTS_FILENAME passed: Query returned correct results"
else
    echo "Validation of $VALIDATION_RESULTS_FILENAME failed: Query returned incorrect results"
    VALIDATION_PASSED="0"
fi

SF為1時(shí)(-f 1)贯吓,用上面的方法比較,SF不為1(>1)時(shí),只要hdfs上的結(jié)果表中行數(shù)大于等于1即驗(yàn)證通過(guò)

if [ `hadoop fs -cat "$RESULT_DIR/*" | head -n 10 | wc -l` -ge 1 ]
then
    echo "Validation passed: Query returned results"
else
    echo "Validation failed: Query did not return results"
    return 1
fi

refreshMetastore

1. 調(diào)用 `$BENCH_MARK_HOME/engines/hive/refresh/` 目錄下的 `hiveRefreshCreateLoad.sql` 腳本
2. `hiveRefreshCreateLoad.sql` 將hdfs上 `/user/root/benchmarks/bigbench/data_refresh/` 目錄下每個(gè)表數(shù)據(jù)插入外部臨時(shí)表
3. 外部臨時(shí)表再將每個(gè)表的數(shù)據(jù)插入Hive數(shù)據(jù)庫(kù)對(duì)應(yīng)的表中

hiveRefreshCreateLoad.sql 將hdfs上 /user/root/benchmarks/bigbench/data_refresh/ 目錄下每個(gè)表數(shù)據(jù)插入外部臨時(shí)表

DROP TABLE IF EXISTS ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix};
CREATE EXTERNAL TABLE ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix}
  ( c_customer_sk             bigint              --not null
  , c_customer_id             string              --not null
  , c_current_cdemo_sk        bigint
  , c_current_hdemo_sk        bigint
  , c_current_addr_sk         bigint
  , c_first_shipto_date_sk    bigint
  , c_first_sales_date_sk     bigint
  , c_salutation              string
  , c_first_name              string
  , c_last_name               string
  , c_preferred_cust_flag     string
  , c_birth_day               int
  , c_birth_month             int
  , c_birth_year              int
  , c_birth_country           string
  , c_login                   string
  , c_email_address           string
  , c_last_review_date        string
  )
  ROW FORMAT DELIMITED FIELDS TERMINATED BY '${hiveconf:fieldDelimiter}'
  STORED AS TEXTFILE LOCATION '${hiveconf:hdfsDataPath}/${hiveconf:customerTableName}'
;
-----------------
set hdfsDataPath=${env:BIG_BENCH_HDFS_ABSOLUTE_REFRESH_DATA_DIR};

外部臨時(shí)表再將每個(gè)表的數(shù)據(jù)插入Hive數(shù)據(jù)庫(kù)對(duì)應(yīng)的表中

INSERT INTO TABLE ${hiveconf:customerTableName}
SELECT * FROM ${hiveconf:customerTableName}${hiveconf:temporaryTableSuffix}
;

附錄

23張數(shù)據(jù)庫(kù)表

FullStackPlan

歡迎關(guān)注公眾號(hào): FullStackPlan 獲取更多干貨哦~

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末吐辙,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子蘸劈,更是在濱河造成了極大的恐慌昏苏,老刑警劉巖,帶你破解...
    沈念sama閱讀 221,198評(píng)論 6 514
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件威沫,死亡現(xiàn)場(chǎng)離奇詭異贤惯,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)棒掠,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,334評(píng)論 3 398
  • 文/潘曉璐 我一進(jìn)店門孵构,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人烟很,你說(shuō)我怎么就攤上這事颈墅。” “怎么了雾袱?”我有些...
    開(kāi)封第一講書(shū)人閱讀 167,643評(píng)論 0 360
  • 文/不壞的土叔 我叫張陵恤筛,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我芹橡,道長(zhǎng)毒坛,這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 59,495評(píng)論 1 296
  • 正文 為了忘掉前任,我火速辦了婚禮煎殷,結(jié)果婚禮上屯伞,老公的妹妹穿的比我還像新娘。我一直安慰自己豪直,他們只是感情好劣摇,可當(dāng)我...
    茶點(diǎn)故事閱讀 68,502評(píng)論 6 397
  • 文/花漫 我一把揭開(kāi)白布。 她就那樣靜靜地躺著顶伞,像睡著了一般饵撑。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上唆貌,一...
    開(kāi)封第一講書(shū)人閱讀 52,156評(píng)論 1 308
  • 那天滑潘,我揣著相機(jī)與錄音,去河邊找鬼锨咙。 笑死语卤,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的酪刀。 我是一名探鬼主播粹舵,決...
    沈念sama閱讀 40,743評(píng)論 3 421
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼骂倘!你這毒婦竟也來(lái)了眼滤?” 一聲冷哼從身側(cè)響起,我...
    開(kāi)封第一講書(shū)人閱讀 39,659評(píng)論 0 276
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤历涝,失蹤者是張志新(化名)和其女友劉穎诅需,沒(méi)想到半個(gè)月后,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體荧库,經(jīng)...
    沈念sama閱讀 46,200評(píng)論 1 319
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡堰塌,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,282評(píng)論 3 340
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了分衫。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片场刑。...
    茶點(diǎn)故事閱讀 40,424評(píng)論 1 352
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖蚪战,靈堂內(nèi)的尸體忽然破棺而出牵现,到底是詐尸還是另有隱情,我是刑警寧澤邀桑,帶...
    沈念sama閱讀 36,107評(píng)論 5 349
  • 正文 年R本政府宣布施籍,位于F島的核電站,受9級(jí)特大地震影響概漱,放射性物質(zhì)發(fā)生泄漏丑慎。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,789評(píng)論 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望竿裂。 院中可真熱鬧玉吁,春花似錦、人聲如沸腻异。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 32,264評(píng)論 0 23
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)悔常。三九已至影斑,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間机打,已是汗流浹背矫户。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 33,390評(píng)論 1 271
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留残邀,地道東北人皆辽。 一個(gè)月前我還...
    沈念sama閱讀 48,798評(píng)論 3 376
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像芥挣,于是被迫代替她去往敵國(guó)和親驱闷。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,435評(píng)論 2 359

推薦閱讀更多精彩內(nèi)容