Adventure 項目分析

一山析、項目背景

Adventure Works Cycle是國內(nèi)一家生產(chǎn)和銷售自行車及和相關(guān)配件的制造公司堰燎。利用每日商品銷售及相關(guān)客戶信息數(shù)據(jù),獲取商品銷售趨勢笋轨、地域分布情況和用戶畫像秆剪,幫助運營人員自主和實時分析。

二爵政、數(shù)據(jù)處理

1.數(shù)據(jù)結(jié)構(gòu)

數(shù)據(jù)結(jié)構(gòu).png

2.需求確認

  • 1.全年自行車整體銷售表現(xiàn)(2020年)
  • 2.上月自行車地域銷售表現(xiàn)(2020年12月)
  • 3.上月自行車產(chǎn)品銷售表現(xiàn)
  • 4.用戶行為分析
  • 5.上月熱品銷售分析

3.數(shù)據(jù)處理

##########1.導(dǎo)包,連接數(shù)據(jù)庫讀取數(shù)據(jù)######
#導(dǎo)包
import pandas as pd
import numpy as np
import pymysql
pymysql.install_as_MySQLdb()
from sqlalchemy import create_engine
#連接數(shù)據(jù)庫,讀取數(shù)據(jù)
engine=create_engine('mysql://root:******@127.0.0.1:3306/adventure?charset=gbk')
gather_customer_order=pd.read_sql_query('select * from dw_customer_order',con=engine)
#查看時間地區(qū)產(chǎn)品聚合表的情況
gather_customer_order.head()

輸出為:
image.png
######2.執(zhí)行第一個需求,對全年自行車銷售整體情況進行數(shù)據(jù)處理以及分析######
#將create_date按月新增一列
gather_customer_order['year_month']=gather_customer_order['create_date'].apply(lambda x:x.strftime('%Y-%m'))
gather_customer_order.head()

輸出為:
image.png
#查看時間產(chǎn)品地區(qū)聚合表的簡要信息
gather_customer_order.info()

輸出為:
image.png
#
#查看產(chǎn)品類別有哪幾類
gather_customer_order.cplb_zw.unique()

輸出為:
image.png
#篩選產(chǎn)品類別為自行車的信息
gather_customer_order_cycle=gather_customer_order[gather_customer_order['cplb_zw']=='自行車']
gather_customer_order_cycle.head()

輸出為:
image.png
#根據(jù)月份查看自行車的銷售數(shù)量與銷售額
pt_overall_sale_performance=gather_customer_order_cycle.groupby('year_month').agg({'order_num':sum,'sum_amount':sum}).reset_index()
#查看整體銷售情況表的基本數(shù)據(jù)
pt_overall_sale_performance

輸出為:
image.png
##添加兩列,分別是銷售量環(huán)比和銷售額環(huán)比
pt_overall_sale_performance['order_num_diff']=pt_overall_sale_performance.iloc[:,1:2].pct_change()
pt_overall_sale_performance['sum_amount_diff']=pt_overall_sale_performance.iloc[:,2:3].pct_change()
#替換na值為0
pt_overall_sale_performance_1_wt=pt_overall_sale_performance.fillna(0)
pt_overall_sale_performance_1_wt

輸出為:
image.png
#將表存到數(shù)據(jù)庫
engine=create_engine('mysql://root:******@127.0.0.1:3306/adventure?charset=gbk')
pt_overall_sale_performance_1_wt.to_sql('pt_overall_sale_performance_1_wt',con=engine,if_exists='replace',index=False)
######3.執(zhí)行第二項需求數(shù)據(jù)處理新荤。上月自行車地域銷售表現(xiàn)#####
#篩選出2020年11月和12月的數(shù)據(jù),按地域和時間進行分組
cycle_territory_11_12=gather_customer_order_cycle[gather_customer_order_cycle['year_month'].isin(['2020-11','2020-12'])]
cycle_territory_11_12_group=cycle_territory_11_12.groupby(['chinese_territory','year_month']).agg({'order_num':sum,'sum_amount':sum}).reset_index()
cycle_territory_11_12_group

輸出為:
image.png
#計算每個地區(qū)的銷售量環(huán)比和銷售額環(huán)比
territory=list(cycle_territory_11_12_group['chinese_territory'].unique())
order_num_diff=pd.Series([])
sum_amount_diff=pd.Series([])
for i in territory:
    a=cycle_territory_11_12_group.loc[cycle_territory_11_12_group['chinese_territory']==i]['order_num'].pct_change().fillna(0)
    b=cycle_territory_11_12_group.loc[cycle_territory_11_12_group['chinese_territory']==i]['sum_amount'].pct_change().fillna(0)
    order_num_diff=order_num_diff.append(a)
    sum_amount_diff=sum_amount_diff.append(b)
cycle_territory_11_12_group['order_num_diff']=order_num_diff
cycle_territory_11_12_group['sum_amount_diff']=sum_amount_diff
cycle_territory_11_12_group

輸出為:
image.png
###將地域情況表存入數(shù)據(jù)庫
engine=create_engine('mysql://frogdata05:Frogdata!1321@106.15.121.232:3306/datafrog05_adventure?charset=gbk')
cycle_territory_11_12_group.to_sql('pt_bicy_territory_2_wt',con=engine,if_exists='replace',index=False)
##查看2020年12月銷量排名前十的城市
city_top_10=gather_customer_order_cycle[gather_customer_order_cycle['year_month']=='2020-12'].groupby('chinese_city').agg({'order_num':sum}).sort_values(by='order_num',ascending=False).reset_index()
city_top_10=city_top_10.iloc[0:10,:]
city_top_10

輸出為:
image.png
#查找銷量前十城市11.12月的銷售情況
city_top_10_order=cycle_territory_11_12[cycle_territory_11_12['chinese_city'].isin(city_top_10['chinese_city'])]
#按城市竖慧、日期分組
city_top_10_order_group=city_top_10_order.groupby(['chinese_city','year_month']).agg({'order_num':sum,'sum_amount':sum}).reset_index()
#計算按成績計算銷售量環(huán)比和銷售額環(huán)比
city=list(city_top_10_order_group['chinese_city'].unique())
order_num_diff=pd.Series([])
sum_amount_diff=pd.Series([])
for i in city:
    a=city_top_10_order_group.loc[city_top_10_order_group['chinese_city']==i]['order_num'].pct_change().fillna(0)
    b=city_top_10_order_group.loc[city_top_10_order_group['chinese_city']==i]['sum_amount'].pct_change().fillna(0)
    order_num_diff=order_num_diff.append(a)
    sum_amount_diff=sum_amount_diff.append(b)
city_top_10_order_group['order_num_diff']=order_num_diff
city_top_10_order_group['sum_amount_diff']=sum_amount_diff
city_top_10_order_group

輸出為:
image.png
##將銷量城市top10環(huán)比表存入數(shù)據(jù)庫
engine=create_engine('mysql://root:******@127.0.0.1:3306/adventure?charset=gbk')
city_top_10_order_group.to_sql('pt_bicy_city_3_wt.to_sql',con=engine,if_exists='replace',index=False)
######4.執(zhí)行第三項需求數(shù)據(jù)處理。上月自行車產(chǎn)品銷售表現(xiàn)#####
#求每個月自行車累計銷量
gather_customer_order_group_month=gather_customer_order_cycle.groupby('year_month').order_num.sum().reset_index()
#將累計銷量與自行車銷售信息表連接
order_num_proportion=pd.merge(gather_customer_order_cycle,gather_customer_order_group_month,on='year_month')
#計算自行車每月銷量占比(每輛自行車當月占比情況夕土,便于可視化輸出)
order_num_proportion['order_proportion']=order_num_proportion['order_num_x']/order_num_proportion['order_num_y']
#重命名
order_num_proportion=order_num_proportion.rename(columns={'order_num_y':'sum_month_order'})

輸出為:
image.png
#將每月自行車銷售信息存入數(shù)據(jù)庫
engine=create_engine('mysql://root:******@1127.0.01:3306/adventure?charset=gbk')
order_num_proportion.to_sql('pt_bicycle_product_sales_month_4_wt',con=engine,if_exists='replace',index=False)
#####查看不同產(chǎn)品自行車表現(xiàn),對數(shù)據(jù)進行整理####
#查看自行車有哪些產(chǎn)品子類
gather_customer_order_cycle['cpzl_zw'].unique()

輸出為:
image.png
####分別查看自行車各子類產(chǎn)品銷售表現(xiàn)####
##########公路自行車###########
gather_customer_order_road=gather_customer_order_cycle[gather_customer_order_cycle['cpzl_zw']=='公路自行車']
#查看公路自行車每月各產(chǎn)品銷售情況
gather_customer_order_road_month=gather_customer_order_road.groupby(['year_month','product_name']).order_num.sum().reset_index()
gather_customer_order_road_month['cpzl_zw']='公路自行車'
#查看公路自行車每月的總銷量
gather_customer_order_road_month_sum=gather_customer_order_road.groupby('year_month').order_num.sum().reset_index()
#將兩表合并
gather_customer_order_road_month=pd.merge(gather_customer_order_road_month,gather_customer_order_road_month_sum,on='year_month')
#########山地自行車#########
gather_customer_order_mountain=gather_customer_order_cycle[gather_customer_order_cycle['cpzl_zw']=='山地自行車']
##查看山地自行車每月每種產(chǎn)品銷售情況
gather_customer_order_mountain_month=gather_customer_order_mountain.groupby(['year_month','product_name']).order_num.sum().reset_index()
gather_customer_order_mountain_month['cpzl_zw']='山地自行車'
#查看山地自行車每月總銷售量
gather_customer_order_mountain_month_sum=gather_customer_order_mountain.groupby('year_month').order_num.sum().reset_index()
#合并兩表
gather_customer_order_mountain_month=pd.merge(gather_customer_order_mountain_month,gather_customer_order_mountain_month_sum,on='year_month')
#########旅游自行車##########
gather_customer_order_tour=gather_customer_order_cycle[gather_customer_order_cycle['cpzl_zw']=='旅游自行車']
#查看旅游自行車每月每種產(chǎn)品銷售量
gather_customer_order_tour_month=gather_customer_order_tour.groupby(['year_month','product_name']).order_num.sum().reset_index()
#查看旅游自行車每月總銷售量
gather_customer_order_tour_month_sum=gather_customer_order_tour.groupby('year_month').order_num.sum().reset_index()
#合并兩表
gather_customer_order_tour_month=pd.merge(gather_customer_order_tour_month,gather_customer_order_tour_month_sum,on='year_month')
gather_customer_order_tour_month['cpzl_zw']='旅游自行車'
#將公路、山地九昧、旅游自行車每月銷售信息表合并
gather_customer_order_month=pd.concat([gather_customer_order_mountain_month,gather_customer_order_road_month,gather_customer_order_tour_month])
gather_customer_order_month

輸出為:
image.png
gather_customer_order_month['order_num_proportion']=gather_customer_order_month['order_num_x']/gather_customer_order_month['order_num_y']
#重命名
gather_customer_order_month=gather_customer_order_month.rename(columns={'order_num_y':'sum_order_month','order_num_x':'order_month_product'})
gather_customer_order_month.head()

輸出為:
image.png
#存入數(shù)據(jù)庫
engine=create_engine('mysql://root:******@127.0.0.1:3306/adventure?charset=gbk')
gather_customer_order_month.to_sql('pt_bicycle_product_sales_order_month_4_wt',con=engine,if_exists='append',index=False)
##計算當月自行車產(chǎn)品環(huán)比
#篩選出11,12月數(shù)據(jù)
gather_customer_order_month_11_12=gather_customer_order_month[gather_customer_order_month['year_month'].isin(['2020-11','2020-12'])]
#按產(chǎn)品類別和日期排序
gather_customer_order_month_11_12=gather_customer_order_month_11_12.sort_values(by=['product_name','year_month'],ascending=True)
#計算自行車銷量環(huán)比
product_name_list=list(gather_customer_order_month_11_12.product_name.unique())
order_top_x=pd.Series([])
for i in product_name_list:
    a=gather_customer_order_month_11_12.loc[gather_customer_order_month_11_12['product_name']==i]['order_month_product'].pct_change().fillna(0)
    order_top_x=order_top_x.append(a)
gather_customer_order_month_11_12['order_num_diff']=order_top_x
#篩選出12月自行車數(shù)據(jù)
gather_customer_order_month_12=gather_customer_order_month_11_12[gather_customer_order_month_11_12['year_month']=='2020-12']
#計算2020年全年累計銷量
gather_customer_order_month_sum=gather_customer_order_month.groupby('product_name').order_month_product.sum().reset_index()
gather_customer_order_month_sum=gather_customer_order_month_sum.rename(columns={'order_month_product':'sum_order_2020'})
gather_customer_order_month_sum
#關(guān)聯(lián)累計銷量表與12月自行車環(huán)比表
gather_customer_order_month_12=pd.merge(gather_customer_order_month_12,gather_customer_order_month_sum,on='product_name')
gather_customer_order_month_12

輸出為:
image.png
#將表保存到數(shù)據(jù)庫
engine=create_engine('mysql://root:F******@127.0.0.1:3306/adventure?charset=gbk')
gather_customer_order_month_12.to_sql('pt_bicycle_product_sales_order_month_12_5_wt',con=engine,if_exists='append',index=False)
######5.執(zhí)行第四項需求進行用戶行為數(shù)據(jù)處理######
###讀取數(shù)據(jù)
engine = create_engine('mysql://root:******@127.0.0.1:3306/adventure_ods?charset=gbk')
df_customer=pd.read_sql_query("select customer_key,birth_date,gender,marital_status from ods_customer where create_date<='2020-12-31'",con=engine)
engine = create_engine('mysql://root:******@127.0.0.1:3306/adventure_ods?charset=gbk')
df_sales_orders = pd.read_sql_query("select *  from ods_sales_orders where create_date>='2020-12-1' and   create_date<='2020-12-31'",con = engine)
#查看數(shù)據(jù)情況
df_customer.head()
df_sales_orders.head()

輸出為:
image.png

image.png
#將兩表連接
sales_customer_order=pd.merge(df_customer,df_sales_orders,on='customer_key',how='inner')
sales_customer_order.head()

輸出:
image.png
#提取出生年份
customer_birth_year = sales_customer_order.birth_date.str.split('-',expand=True).rename(columns={0:'birth_year'}).drop(labels=[1,2],axis=1)
#合并
sales_customer_order=pd.concat([sales_customer_order,customer_birth_year],axis=1)
#修改出生年為int數(shù)據(jù)類型
sales_customer_order['birth_year'] = sales_customer_order['birth_year'].astype('int')
#計算用戶年齡
sales_customer_order['customer_age'] = 2021 - sales_customer_order['birth_year']
#用戶年齡分層
#年齡分層1
age_level=pd.cut(sales_customer_order['customer_age'],[30,35,40,45,50,55,60,65],labels=['30-34','35-39','40-44','45-49','50-54','55-59','60-64'],right=False)
#新增'age_level'分層區(qū)間列
sales_customer_order['age_level'] =age_level
sales_customer_order.head()

輸出為:
image.png
#篩選銷售訂單為自行車的訂單信息
df_customer_order_bycle = sales_customer_order.loc[sales_customer_order['cplb_zw'] == '自行車']
# 計算年齡比率(可用于各類占比計算)
df_customer_order_bycle['age_level_rate']=1/df_customer_order_bycle.customer_age.count()
#將年齡分為3個層次
df_customer_order_bycle.loc[(df_customer_order_bycle['customer_age'] <= 29),'age_level2'] = '<=29'
df_customer_order_bycle.loc[(df_customer_order_bycle['customer_age'] >= 30) & (df_customer_order_bycle['customer_age'] < 40),'age_level2'] = '30-39'
df_customer_order_bycle.loc[(df_customer_order_bycle['customer_age'] >= 40),'age_level2'] = '>=40'
df_customer_order_bycle.head()

輸出為:


image.png
# 求每個年齡段人數(shù)
age_level2_count = df_customer_order_bycle.groupby(by = 'age_level2').sales_order_key.count().reset_index()
age_level2_count

輸出為:
image.png
#用戶性別占比
gender_count = df_customer_order_bycle.groupby(by = 'gender').cplb_zw.count().reset_index()
gender_count
image.png
#合并年齡段表毕匀,計算占比
df_customer_order_bycle = pd.merge(df_customer_order_bycle,age_level2_count,on = 'age_level2').rename(columns = {'sales_order_key_y':'age_level2_count'})
df_customer_order_bycle['age_level2_rate'] = 1/df_customer_order_bycle['age_level2_count']
#合并性別表铸鹰,計算占比
df_customer_order_bycle = pd.merge(df_customer_order_bycle,gender_count,on = 'gender').rename(columns = {'cplb_zw_y':'gender_count'})
df_customer_order_bycle['gender_rate'] = 1/df_customer_order_bycle['gender_count']
df_customer_order_bycle.head()

輸出為:
image.png
#存入數(shù)據(jù)庫
engine = create_engine('mysql://root:******@127.0.0.1:3306/adventure?charset=gbk')
df_customer_order_bycle.to_sql('pt_user_behavior_20_wt',con = engine,if_exists='append', index=False)
######6.執(zhí)行第五項需求,熱品銷售分析######
#篩選12月數(shù)據(jù)
gather_customer_order_12 = gather_customer_order_cycle.loc[gather_customer_order_cycle['year_month'] == '2020-12']
gather_customer_order_12.head()
#計算產(chǎn)品銷售數(shù)量
#按照銷量降序皂岔,取TOP10產(chǎn)品

customer_order_12_top10 = gather_customer_order_12.groupby(by = 'product_name').order_num.count().reset_index().\
                        sort_values(by = 'order_num',ascending = False).head(10)
customer_order_12_top10

輸出為:
image.png
#篩選top10產(chǎn)品的銷量與環(huán)比
#銷量top10
customer_order_month_11_12 = gather_customer_order_month_11_12[['year_month','product_name','order_month_product','cpzl_zw','order_num_diff']]
customer_order_month_11_12 = customer_order_month_11_12[customer_order_month_11_12['product_name'].\
                                                        isin(list(customer_order_12_top10['product_name']))]
customer_order_month_11_12['category'] = '本月TOP10銷量'
customer_order_month_12 = gather_customer_order_month_11_12.loc[gather_customer_order_month_11_12['year_month'] == '2020-12'].\
                            sort_values(by = 'order_num_diff',ascending = False).head(10)
customer_order_month_11_12 = gather_customer_order_month_11_12[['year_month','product_name','order_month_product','cpzl_zw','order_num_diff']]
#增速top10
customer_order_month_12_top10_seep = customer_order_month_11_12.loc[customer_order_month_11_12['product_name'].\
                                                        isin(list(customer_order_month_12['product_name']))]
customer_order_month_12_top10_seep['category'] = '本月TOP10增速'
#合并兩表
hot_products_12 = pd.concat([customer_order_month_11_12,customer_order_month_12_top10_seep],axis = 0)
hot_products_12

輸出:


image.png
#存入數(shù)據(jù)庫
engine = create_engine('mysql://frogdata05:Frogdata!1321@106.15.121.232:3306/datafrog05_adventure?charset=gbk')

datafrog=engine
hot_products_12.to_sql('pt_hot_products_wt',con = datafrog,if_exists='append', index=False)

三蹋笼、可視化輸出與報告輸出

1..png
2.png
3.png
4.png
5.png
6.png
7.png
8.png
9.png

10.png
11.png
12.png
13.png
14.png
15.png
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市躁垛,隨后出現(xiàn)的幾起案子剖毯,更是在濱河造成了極大的恐慌,老刑警劉巖教馆,帶你破解...
    沈念sama閱讀 221,820評論 6 515
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件逊谋,死亡現(xiàn)場離奇詭異,居然都是意外死亡土铺,警方通過查閱死者的電腦和手機胶滋,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,648評論 3 399
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來悲敷,“玉大人究恤,你說我怎么就攤上這事『蟮拢” “怎么了部宿?”我有些...
    開封第一講書人閱讀 168,324評論 0 360
  • 文/不壞的土叔 我叫張陵,是天一觀的道長瓢湃。 經(jīng)常有香客問我理张,道長赫蛇,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 59,714評論 1 297
  • 正文 為了忘掉前任涯穷,我火速辦了婚禮棍掐,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘拷况。我一直安慰自己作煌,他們只是感情好,可當我...
    茶點故事閱讀 68,724評論 6 397
  • 文/花漫 我一把揭開白布赚瘦。 她就那樣靜靜地躺著粟誓,像睡著了一般。 火紅的嫁衣襯著肌膚如雪起意。 梳的紋絲不亂的頭發(fā)上鹰服,一...
    開封第一講書人閱讀 52,328評論 1 310
  • 那天,我揣著相機與錄音揽咕,去河邊找鬼悲酷。 笑死,一個胖子當著我的面吹牛亲善,可吹牛的內(nèi)容都是我干的设易。 我是一名探鬼主播,決...
    沈念sama閱讀 40,897評論 3 421
  • 文/蒼蘭香墨 我猛地睜開眼蛹头,長吁一口氣:“原來是場噩夢啊……” “哼顿肺!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起渣蜗,我...
    開封第一講書人閱讀 39,804評論 0 276
  • 序言:老撾萬榮一對情侶失蹤屠尊,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后耕拷,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體讼昆,經(jīng)...
    沈念sama閱讀 46,345評論 1 318
  • 正文 獨居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 38,431評論 3 340
  • 正文 我和宋清朗相戀三年骚烧,在試婚紗的時候發(fā)現(xiàn)自己被綠了控淡。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 40,561評論 1 352
  • 序言:一個原本活蹦亂跳的男人離奇死亡止潘,死狀恐怖掺炭,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情凭戴,我是刑警寧澤涧狮,帶...
    沈念sama閱讀 36,238評論 5 350
  • 正文 年R本政府宣布,位于F島的核電站,受9級特大地震影響者冤,放射性物質(zhì)發(fā)生泄漏肤视。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 41,928評論 3 334
  • 文/蒙蒙 一涉枫、第九天 我趴在偏房一處隱蔽的房頂上張望邢滑。 院中可真熱鬧,春花似錦愿汰、人聲如沸困后。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,417評論 0 24
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽摇予。三九已至,卻和暖如春吗跋,著一層夾襖步出監(jiān)牢的瞬間侧戴,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 33,528評論 1 272
  • 我被黑心中介騙來泰國打工跌宛, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留酗宋,地道東北人。 一個月前我還...
    沈念sama閱讀 48,983評論 3 376
  • 正文 我出身青樓疆拘,卻偏偏與公主長得像蜕猫,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子入问,可洞房花燭夜當晚...
    茶點故事閱讀 45,573評論 2 359

推薦閱讀更多精彩內(nèi)容

  • 本文是對Adventure項目案例的分析總結(jié)丹锹,主要使用jupyter進行數(shù)據(jù)處理稀颁,將處理好的數(shù)據(jù)存儲到數(shù)據(jù)庫中芬失,連...
    我就是那個無敵大長腿閱讀 711評論 0 0
  • 本文是基于實現(xiàn)第一階段的業(yè)務(wù)目標后,使用python匾灶、數(shù)據(jù)倉庫實現(xiàn)的自主更新可視化看板棱烂。 項目目錄 項目介紹 分析...
    我就是那個無敵大長腿閱讀 256評論 0 1
  • 最近剛剛做的adventure項目,接下來把我做項目的過程和步驟展示出來阶女,方便大家學習理解颊糜。 以下先展示本次項目的...
    lwj_5b48閱讀 931評論 0 2
  • 簡介 項目介紹: Adventure Works Cycles 是一家銷售自行車及相關(guān)零件的公司,通過現(xiàn)有數(shù)據(jù)監(jiān)控...
    叉菌閱讀 587評論 0 1
  • 一秃踩、項目概述 1衬鱼、成果預(yù)覽 最近回顧了Adventure項目,在此記錄憔杨、總結(jié)分析實現(xiàn)過程鸟赫。該項目主要任務(wù)是利用py...
    且聽風吟92閱讀 395評論 0 0