??首先談一下Socket 機(jī)制本身,socket為各種協(xié)議提供了統(tǒng)一接口的一種ipc機(jī)制伞访。在linux中掂骏,它由幾個部分組成。為了討論厚掷,先討論幾個數(shù)據(jù)結(jié)構(gòu)弟灼,如下所示:
struct net_proto_family {
int family;
int (*create)(struct socket *sock, int protocol);
short authentication;
short encryption;
short encrypt_net;
struct module *owner;
};
??這個數(shù)據(jù)結(jié)構(gòu)定義在linux的kernel中级解,在文件src/include/linux/net.h中。其中family是用來標(biāo)示協(xié)議號的田绑。而那個create函數(shù)指針則表示用來創(chuàng)建socket時所對應(yīng)的create函數(shù)勤哗,owner則是這個協(xié)議的module結(jié)構(gòu)。同時掩驱,還定義一個協(xié)議數(shù):
????#define NPROTO 64
??再看一下socket的本身的定義:
struct socket {
socket_state state;
unsigned long flags;
struct proto_ops *ops;
struct fasync_struct *fasync_list;
struct file *file;
struct sock *sk;
wait_queue_head_t wait;
short type;
};
??ops指針?biāo)鶎?yīng)的是在這個socket上的一些操作俺陋,它的定義如下:
struct proto_ops {
int family;
struct module *owner;
int (*release) (struct socket *sock);
int (*bind) (struct socket *sock,
struct sockaddr *myaddr,
int sockaddr_len);
int (*connect) (struct socket *sock,
struct sockaddr *vaddr,
int sockaddr_len, int flags);
int (*socketpair) (struct socket *sock1,
struct socket *sock2);
int (*accept) (struct socket *sock,
struct socket *newsock, int flags);
int (*getname) (struct socket *sock,
struct sockaddr *addr,
int *sockaddr_len, int peer);
unsigned int (*poll) (struct file *file, struct socket *sock,
struct poll_table_struct *wait);
int (*ioctl) (struct socket *sock, unsigned int cmd,
unsigned long arg);
int (*listen) (struct socket *sock, int len);
int (*shutdown) (struct socket *sock, int flags);
int (*setsockopt)(struct socket *sock, int level,
int optname, char __user *optval,
int optlen);
int (*getsockopt)(struct socket *sock, int level,
int optname, char __user *optval,
int __user *optlen);
int (*sendmsg) (struct kiocb *iocb, struct socket *sock,
struct msghdr *m, size_t total_len);
int (*recvmsg) (struct kiocb *iocb, struct socket *sock,
struct msghdr *m, size_t total_len,
int flags);
int (*mmap) (struct file *file, struct socket *sock,
struct vm_area_struct * vma);
ssize_t (*sendpage) (struct socket *sock, struct page *page,
int offset, size_t size, int flags);
};
??從這個定義可以看出它定義了很多函數(shù)指針,也就是當(dāng)生成某個協(xié)議的socket時昙篙,這個協(xié)議所對應(yīng)的函數(shù)可以賦給這些函數(shù)指針。這樣協(xié)議的實(shí)現(xiàn)者和socket本身的實(shí)現(xiàn)機(jī)制就可以分開诱咏。
??在kernel中定義了一個靜態(tài)的全局?jǐn)?shù)組苔可,如下所示:
static struct net_proto_family * net_families[NPROTO];
??這個定義在kernel的socket.c中。當(dāng)linux系統(tǒng)啟動時袋狞,系統(tǒng)的init進(jìn)程會調(diào)用sock_init函數(shù)對這個數(shù)組初始化焚辅, 在init進(jìn)程中調(diào)用過程是:
/*start_kernel =>
*rest_init =>
*kernel_thread(init, NULL, CLONE_FS |CLONE_SIGHAND) =>
*init =>
*do_basic_setup =>
*sock_init:
*/
for(int i = 0; i < NPROTO; i++)
net_families[i]=NULL;
??也就是每一個協(xié)議對應(yīng)這個數(shù)組的一項(xiàng)。同時在這個socket.c文件中還定義了一些socket注冊函數(shù):
int sock_register(struct net_proto_family *ops)
{
int err;
if (ops->family >= NPROTO) {
printk(KERN_CRIT "protocol %d >= NPROTO(%d)\n",
ops->family, NPROTO);
return -ENOBUFS;
}
net_family_write_lock();
err = -EEXIST;
if (net_families[ops->family] == NULL) {
net_families[ops->family]=ops;
err = 0;
}
net_family_write_unlock();
printk(KERN_INFO "NET: Registered protocol family %d\n",
ops->family);
return err;
}
??從這個代碼可以看出苟鸯,它最主要的工作就是在net_families數(shù)組所對應(yīng)的項(xiàng)中把協(xié)議所對應(yīng)的socket操作函數(shù)的net_proto_family結(jié)構(gòu)指針給賦上值同蜻,這樣當(dāng)給定某個協(xié)議的socket時,就能通過協(xié)議號在這個net_families數(shù)組中找對應(yīng)的項(xiàng)早处,進(jìn)而可以得到這個socket的實(shí)際的創(chuàng)建函數(shù)湾蔓,從而在需要生成一個新的這個協(xié)議的socket時調(diào)用用這個創(chuàng)建函數(shù)。
??那么這個socket注冊函數(shù)是在哪調(diào)用的呢砌梆?
??一般是在協(xié)議初始化被調(diào)用的默责。如tipc協(xié)議在linux中是作為一個module來實(shí)現(xiàn)的,那么在module的module_init(tipc_init);
??這個tipc_init調(diào)用關(guān)系如下:
/*
* tipc_init -> start_core -> start_core_base -> socket_init ->
* sock_register(&tipc_family_ops)咸包;
* 這個tipc_family_ops的定義如下:
*/
static struct net_proto_family tipc_family_ops = {
.owner = THIS_MODULE,
.family = AF_TIPC,
.create = tipc_create
};
??AF_TIPC就是TIPC對應(yīng)的協(xié)議標(biāo)示桃序,其值是30。而tipc_create函數(shù)就是tipc的socket的創(chuàng)建函數(shù)烂瘫。
static int tipc_create(struct socket *sock, int protocol)
{
struct tipc_sock *tsock;
struct tipc_port *port;
struct sock *sk;
u32 ref;
struct task_struct *tsk;
int size = (sizeof(tsock->comm) < sizeof(tsk->comm)) ?
sizeof(tsock->comm) : sizeof(tsk->comm);
if ((protocol < 0) || (protocol >= MAX_TIPC_STACKS)) {
warn("Invalid protocol number : %d, permitted range 0 - %d.\n",
protocol, MAX_TIPC_STACKS);
return -EPROTONOSUPPORT;
}
if (protocol != 0) {
int vres = handle_protocol(sock, protocol);
return vres;
}
ref = tipc_createport_raw(0, &dispatch, &wakeupdispatch,
TIPC_LOW_IMPORTANCE, 0);
if (unlikely(!ref))
return -ENOMEM;
sock->state = SS_UNCONNECTED;
switch (sock->type) {
case SOCK_STREAM:
sock->ops = &stream_ops;
break;
case SOCK_SEQPACKET:
sock->ops = &packet_ops;
break;
case SOCK_DGRAM:
tipc_set_portunreliable(ref, 1);
case SOCK_RDM:
tipc_set_portunreturnable(ref, 1);
sock->ops = &msg_ops;
sock->state = SS_READY;
break;
default:
tipc_deleteport(ref);
return -EPROTOTYPE;
}
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,12)
sk = sk_alloc(AF_TIPC, GFP_KERNEL, &tipc_proto, 1);
#else
sk = sk_alloc(AF_TIPC, GFP_KERNEL, 1, tipc_cache);
#endif
if (!sk) {
tipc_deleteport(ref);
return -ENOMEM;
}
sock_init_data(sock, sk);
init_waitqueue_head(sk->sk_sleep);
sk->sk_rcvtimeo = 8 * HZ;
tsock = tipc_sk(sk);
port = tipc_get_port(ref);
tsock->p = port;
port->usr_handle = tsock;
init_MUTEX(&tsock->sem);
memset(tsock->comm, 0, size);
tsk = current;
task_lock(tsk);
tsock->pid = tsk->pid;
memcpy(tsock->comm, tsk->comm, size);
task_unlock(tsk);
tsock->comm[size-1]=0;
tsock->overload_hwm = 0;
tsock->ovld_limit = tipc_persocket_overload;
dbg("sock_create: %x\n",tsock);
atomic_inc(&tipc_user_count);
return 0;
}
??從這個函數(shù)的定義中可以看出媒熊,根據(jù)這個協(xié)議的不同的類型,如SOCK_STREAM還是SOCK_SEQPACKET坟比,這給生成socket的ops指針賦予不同的操作類型芦鳍,如下所示:
static struct proto_ops packet_ops = {
.owner = THIS_MODULE,
.family = AF_TIPC,
.release = release,
.bind = bind,
.connect = connect,
.socketpair = no_skpair,
.accept = accept,
.getname = get_name,
.poll = poll,
.ioctl = ioctl,
.listen = listen,
.shutdown = shutdown,
.setsockopt = setsockopt,
.getsockopt = getsockopt,
.sendmsg = send_packet,
.recvmsg = recv_msg,
.mmap = no_mmap,
.sendpage = no_sendpage
};
static struct proto_ops stream_ops = {
.owner = THIS_MODULE,
.family = AF_TIPC,
.release = release,
.bind = bind,
.connect = connect,
.socketpair = no_skpair,
.accept = accept,
.getname = get_name,
.poll = poll,
.ioctl = ioctl,
.listen = listen,
.shutdown = shutdown,
.setsockopt = setsockopt,
.getsockopt = getsockopt,
.sendmsg = send_stream,
.recvmsg = recv_stream,
.mmap = no_mmap,
.sendpage = no_sendpage
};
??以上所討論的都是linux內(nèi)核當(dāng)中的部分,但對于應(yīng)用程序來說葛账,使用socket編程時怜校,并不是直接與這些內(nèi)核當(dāng)中的接口打交道的。由于應(yīng)用程序運(yùn)行在用戶空間注竿,這這些接口是需要在內(nèi)核空間才可以調(diào)到茄茁。
??那么就有一個問題魂贬,應(yīng)用程序是如何調(diào)用到這些接口的呢?其中的奧秘就在于glibc這個庫裙顽。linux應(yīng)用程序是調(diào)用glibc中的socket函數(shù)來編程的付燥,在glibc中socket的函數(shù)只有一套,通過以上的這個機(jī)制它就可以對應(yīng)各種協(xié)議的socket函數(shù)愈犹。
??那么glibc中是如何調(diào)用到內(nèi)核中的函數(shù)的呢键科?我們先來看一下內(nèi)核socket.c這個文件,在這個文件中還定義了一個如下的函數(shù):
#ifdef __ARCH_WANT_SYS_SOCKETCALL
#define AL(x) ((x) * sizeof(unsigned long))
static unsigned char nargs[18]={AL(0),AL(3),AL(3),AL(3),AL(2),AL(3),
AL(3),AL(3),AL(4),AL(4),AL(4),AL(6),
AL(6),AL(2),AL(5),AL(5),AL(3),AL(3)};
#undef AL
asmlinkage long sys_socketcall(int call, unsigned long __user *args)
{
unsigned long a[6];
unsigned long a0,a1;
int err;
if(call<1||call>SYS_RECVMSG)
return -EINVAL;
if (copy_from_user(a, args, nargs[call]))
return -EFAULT;
err = audit_socketcall(nargs[call]/sizeof(unsigned long), a);
if (err)
return err;
a0=a[0];
a1=a[1];
trace_socket_call(call, a0);
switch(call)
{
case SYS_SOCKET:
err = sys_socket(a0,a1,a[2]);
break;
case SYS_BIND:
err = sys_bind(a0,(struct sockaddr __user *)a1, a[2]);
break;
case SYS_CONNECT:
err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
break;
case SYS_LISTEN:
err = sys_listen(a0,a1);
break;
case SYS_ACCEPT:
err = sys_accept(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
break;
case SYS_GETSOCKNAME:
err = sys_getsockname(a0,(struct sockaddr __user *)a1, (int __user *)a[2]);
break;
case SYS_GETPEERNAME:
err = sys_getpeername(a0, (struct sockaddr __user *)a1, (int __user *)a[2]);
break;
case SYS_SOCKETPAIR:
err = sys_socketpair(a0,a1, a[2], (int __user *)a[3]);
break;
case SYS_SEND:
err = sys_send(a0, (void __user *)a1, a[2], a[3]);
break;
case SYS_SENDTO:
err = sys_sendto(a0,(void __user *)a1, a[2], a[3],
(struct sockaddr __user *)a[4], a[5]);
break;
case SYS_RECV:
err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
break;
case SYS_RECVFROM:
err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
(struct sockaddr __user *)a[4], (int __user *)a[5]);
break;
case SYS_SHUTDOWN:
err = sys_shutdown(a0,a1);
break;
case SYS_SETSOCKOPT:
err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
break;
case SYS_GETSOCKOPT:
err = sys_getsockopt(a0, a1, a[2], (char __user *)a[3], (int __user *)a[4]);
break;
case SYS_SENDMSG:
err = sys_sendmsg(a0, (struct msghdr __user *) a1, a[2]);
break;
case SYS_RECVMSG:
err = sys_recvmsg(a0, (struct msghdr __user *) a1, a[2]);
break;
default:
err = -EINVAL;
break;
}
return err;
}
#endif
??這個sys_socketcall是一個系統(tǒng)調(diào)用漩怎,所有的glibc中的socket 函數(shù)都是通過這個系統(tǒng)調(diào)用進(jìn)入到內(nèi)核空間的勋颖。我們來看accept的調(diào)用。glibc中accept的調(diào)用在:sysdeps\unix\sysv\linux\accept.S文件中:
//glibc-2.0.111\sysdeps\unix\sysv\linux\accept.S
#define socket accept
#define __socket __libc_accept
#define NARGS 3
#define NEED_CANCELLATION
#include <socket.S>
libc_hidden_def (accept)
??這段與socket.S是accept()從用戶態(tài)進(jìn)入內(nèi)核態(tài)的關(guān)鍵代碼勋锤。accept.S中將accept定義為socket饭玲,__socket定義為__libc_accpet,NARGS定義為3叁执,表示調(diào)用參數(shù)有3個茄厘。接下來包含了socket.S文件,如下:
The socket-oriented system calls are handled unusally in Linux.
They are all gated through the single `socketcall' system call number.
`socketcall' takes two arguments: the first is the subcode, specifying
which socket function is being called; and the second is a pointer to
the arguments to the specific function.
The .S files for the other calls just #define socket and #include this.
翻譯成中文的大概意思是:
??socket系列的系統(tǒng)函數(shù)經(jīng)常被調(diào)用谈宛。他們都通過單一的一個socketcall系統(tǒng)調(diào)用號(進(jìn)行調(diào)用)次哈。Socketcall有兩個參數(shù):第一個是子調(diào)用碼,指定了哪一個socket函數(shù)被調(diào)用吆录;第二個參數(shù)是一個指向被調(diào)用的socket函數(shù)所需參數(shù)的指針窑滞。其他的(socket系列的)函數(shù)的.S文件只需要#define socket 為某個值和#include 這個文件(指此socket.S)即可。
??在socket.S中進(jìn)行了進(jìn)一步的調(diào)用恢筝,socket從用戶態(tài)進(jìn)行相應(yīng)參數(shù)的設(shè)置葛假,然后使用int指令自陷,調(diào)用操作系統(tǒng)提供的中斷服務(wù)程序滋恬,在內(nèi)核態(tài)執(zhí)行相應(yīng)的系統(tǒng)服務(wù)聊训,我們將整個函數(shù)的代碼粘貼進(jìn)來,在具體的語句上進(jìn)行注釋解釋:
1 // glibc-2.0.111\sysdeps\unix\sysv\linux\i386\socket.S
2 #include <sysdep.h>
3 #include <socketcall.h>
4 // 定義了P(a,b)與P2(a,b)兩個宏恢氯,他們的作用都是將a與b連接到一起带斑。
5 #define P(a, b) P2(a, b)
6 #define P2(a, b) a##b
7
8 .text
9
10 #ifndef __socket
11 #ifndef NO_WEAK_ALIAS
12 #define __socket P(__,socket)
13 #else
14 #define __socket socket
15 #endif
16 #endif
17
18 .globl __socket
19 ENTRY (__socket) //這里開始進(jìn)行函數(shù)的處理
20
21
22 /* 保存ebx的值 */
23 movl %ebx, %edx
24
25 // SYS_ify宏在sysdep.h中定義。一會兒詳細(xì)了解它的作用
26 // 下面一條語句的作用是將socketcall的調(diào)用號存入寄存器eax
27 movl $SYS_ify(socketcall), %eax /* System call number in %eax. */
28
29 /* 子調(diào)用號放入ebx中勋拟,關(guān)于下面一條語句的將在下面有詳細(xì)解釋 */
30 movl $P(SOCKOP_socket), %ebx /* Subcode is first arg to syscall. */
31 /* 指向調(diào)用參數(shù)的指針放入ecx中 */
32 lea 4(%esp), %ecx /* Address of args is 2nd arg. */
33
34 /* 0x80中斷勋磕,自陷進(jìn)入內(nèi)核態(tài) */
35 int $0x80
36
37 /* 恢復(fù)ebx寄存器的值 */
38 movl %edx, %ebx
39
40 /* eax是返回值,如果<0則表示調(diào)用出錯敢靡,就跳到錯誤處理的代碼中去 */
41 cmpl $-125, %eax
42 jae SYSCALL_ERROR_LABEL
43
44 /* 成功的話就返回相應(yīng)的返回值 */
45 L(pseudo_end):
46 ret
47
48 PSEUDO_END (__socket)
49
50 #ifndef NO_WEAK_ALIAS
51 weak_alias (__socket, socket)
52 #endif
??我們首先看movl $SYS_ify(socketcall), %eax這一條語句挂滓。SYS_ify在sysdep.h中定義,但是有兩個不同文件夾下的sysdep.h文件啸胧。
(1)
??按照文件層次來講赶站,應(yīng)該是按照如下的代碼進(jìn)行:
1 // glibc-2.0.111\sysdeps\unix\sysv\linux\i386\sysdep.h
2 .....
3 #undef SYS_ify
4 #define SYS_ify(syscall_name) __NR_##syscall_name
5 .....
??在這段代碼之前有一段注釋:
For Linux we can use the system call table in the header file
/usr/include/asm/unistd.hof the kernel. But these symbols do not follow the
SYS_* syntax so we have to redefine the `SYS_ify' macro here.
對于Linux系統(tǒng)幔虏,我們可以使用在/usr/include/asm/unistd.h頭文件中的內(nèi)核系統(tǒng)調(diào)用表。
但是這些符號并不是以SYS_符號為前綴的贝椿,所以這里我們必須重定義SYS_ify宏想括。
可以看到,通過SYS_ify(socketcall)烙博,我們得到了__NR_socketcall瑟蜈。
(2)
??按照另外一本書上所講的,在下列位置中存在另外一套代碼:
1 // glibc-2.0.111\sysdeps\unix\sysdep.h
2 ……
3 #ifdef __STDC__
4 #define SYS_ify(syscall_name) SYS_##syscall_name
5 #else
6 #define SYS_ify(syscall_name) SYS_/**/syscall_name
7 #endif
8 ……
??如果是經(jīng)由這段代碼的處理渣窜,那么我們將得到SYS_socketcall铺根,那么這又是一個什么呢?我們查看源代碼是看不到的乔宿。而在實(shí)際的操作系統(tǒng)(筆者所使用的是Fedora 14)中位迂,/usr/include /bits/syscall.h中則有相應(yīng)的答案,這個文件是libc在構(gòu)建時候根據(jù)具體的操作系統(tǒng)而生成的予颤。在其中,會有:
1 #ifndef _SYSCALL_H
2 # error "Never use <bits/syscall.h> directly; include <sys/syscall.h> instead."
3 #endif
4
5 #define SYS__llseek __NR__llseek
6 #define SYS__newselect __NR__newselect
7 #define SYS__sysctl __NR__sysctl
8 #define SYS_access __NR_access
9 #define SYS_acct __NR_acct
10 ……
11 #define SYS_socketcall __NR_socketcall
12 ……
可以看到冬阳,通過這一部分的處理之后蛤虐,最后依然會得到__NR_socketcall。
??了解Linux系統(tǒng)的人都知道肝陪,在/linux/include/linux/unistd.h中驳庭,我們可以看到,這些內(nèi)容:
1 // linux/include/linux/unistd.h
2 ……
3 #define __NR_setup 0 /* used only by init, to get system going */
4 #define __NR_exit 1
5 #define __NR_fork 2
6 #define __NR_read 3
7 #define __NR_write 4
8 ……
9 #define __NR_socketcall 102
10 ……
我們可以看到氯窍,__NR_socketcall
被定義為102饲常,上面一行的代碼即是將eax的值賦成102,即此系統(tǒng)調(diào)用的調(diào)用號狼讨。下面我們看movl $P(SOCKOP_socket), %ebx
這一句贝淤。在socketcall.h中有相應(yīng)的定義:
1 // glibc-2.0.111\sysdeps\unix\sysv\linux\socketcall.h
2 ……
3 #define SOCKOP_socket 1
4 #define SOCKOP_bind 2
5 #define SOCKOP_connect 3
6 #define SOCKOP_listen 4
7 #define SOCKOP_accept 5
8 #define SOCKOP_getsockname 6
9 #define SOCKOP_getpeername 7
10 #define SOCKOP_socketpair 8
11 #define SOCKOP_send 9
12 #define SOCKOP_recv 10
13 #define SOCKOP_sendto 11
14 #define SOCKOP_recvfrom 12
15 #define SOCKOP_shutdown 13
16 #define SOCKOP_setsockopt 14
17 #define SOCKOP_getsockopt 15
18 #define SOCKOP_sendmsg 16
19 #define SOCKOP_recvmsg 17
20 ……
??這一句的意思就是將相應(yīng)的操作碼賦予ebx,此例中是5政供。下面我們進(jìn)入操作系統(tǒng)中的代碼進(jìn)行分析播聪,在entry.S中,有一段中斷處理函數(shù):
1 // linux/arch/i386/kernel/entry.S
2 _system_call:
3 // 保存eax的值
4 pushl %eax # save orig_eax
5 // 保存所有寄存器的值
6 SAVE_ALL
7 movl $-ENOSYS,EAX(%esp)
8 // 比較eax中的調(diào)用號是否超過了限定的數(shù)值布隔,NR_syscalls离陶,默認(rèn)是256。
9 cmpl $(NR_syscalls),%eax # compare whether eax>NR_syscalls
10 jae ret_from_sys_call
11 //從系統(tǒng)調(diào)用表中找到對應(yīng)的入口地址衅檀,放入eax中
12 movl _sys_call_table(,%eax,4),%eax
13 testl %eax,%eax
14 je ret_from_sys_call
15 // 子調(diào)用號放入ebx中
16 movl _current,%ebx
17 andl $~CF_MASK,EFLAGS(%esp) # clear carry - assume no errors
18 movl $0,errno(%ebx)
19 movl %db6,%edx
20 movl %edx,dbgreg6(%ebx) # save current hardware debugging status
21 testb $0x20,flags(%ebx) # PF_TRACESYS
22 jne 1f
23 // 進(jìn)行系統(tǒng)調(diào)用
24 call *%eax
25 movl %eax,EAX(%esp) # save the return value
26 movl errno(%ebx),%edx
27 negl %edx
28 je ret_from_sys_call
29 movl %edx,EAX(%esp)
30 orl $(CF_MASK),EFLAGS(%esp) # set carry to indicate error
31 jmp ret_from_sys_call
??具體的語句的作用已經(jīng)在代碼中進(jìn)行了標(biāo)注招刨。我們接下來可以查看處理socket調(diào)用的系統(tǒng)函數(shù)socket.c:
1 // linux/net/socket.c
2 ……
3 asmlinkage int sys_socketcall(int call, unsigned long *args)
4 {
5 int er;
6 switch(call)
7 {
8 case SYS_SOCKET:
9 er=verify_area(VERIFY_READ, args, 3 * sizeof(long));
10 if(er)
11 return er;
12 return(sock_socket(get_fs_long(args+0),
13 get_fs_long(args+1),
14 get_fs_long(args+2)));
15 ……
16 case SYS_ACCEPT:
17 er=verify_area(VERIFY_READ, args, 3 * sizeof(long));
18 if(er)
19 return er;
20 return(sock_accept(get_fs_long(args+0),
21 (struct sockaddr *)get_fs_long(args+1),
22 (int *)get_fs_long(args+2)));
23 ……
??這個sys_socketcall函數(shù)是socket系列函數(shù)的分發(fā)函數(shù),根據(jù)具體調(diào)用號哀军,調(diào)用不同的處理函數(shù)進(jìn)行處理沉眶,至此打却,我們看到了整個從應(yīng)用層socket函數(shù)到BSDsocket的層的傳遞過程,加深了我們對于此過程的了解沦寂。
本文非原創(chuàng)
參考文獻(xiàn):
http://blog.sina.com.cn/s/blog_605507340101cwaf.html
https://www.xuebuyuan.com/910647.html
https://segmentfault.com/a/1190000008926093