What's Machine Learning

Machine Learning

Machine learning is a way to teach computers to learn without explicitly programming them. This technique has been used in various industries. For example, you may have noticed that Facebook can automatically tag friends' faces from your pictures, or your email box can prevent spam emails for you. That's all marching learning. We probably use it tons a day without even knowing it.

Machine learning is used to solve two kinds of problems: Classification Problems and Regression Problems. We call it Classification Problems because we expect the computer's responses (learning results) fall into categories. For example, if we ask a computer to predict the weather at 5pm tomorrow, it will tell us it's going to be sunny, cloudy, rainy or something else. Regression Problem is different. The computer responds us with a continuous value. For example, we ask a computer to predict stock price based on historical number, the response it gives will be still be a number.

There are two types of machine learning: supervised and unsupervised.

A computer under supervised learning needs a set of the training data, so that it can come up our desired responses. It's like humans teach the computers by holding their "hands". For example, in order to make computer understand the red color, we feed the computer various levels of red color, so that it can judge if a color is red the next time.

A computer under unsupervised learning makes inferences by itself based on data. For example, it figures out data patterns from a sea of information, and groups similar patterns together.

To enable machine learning, specifically supervised learning, people have to build a model around this training & problem-solving process. The goal is trying to minimize the gap between the computer's responses and the reality.

That's where I am now learning how computers learning from humans :)

Credit: Coursera Machine Learning course, by Andrew Ng

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末侥袜,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌,老刑警劉巖彩库,帶你破解...
    沈念sama閱讀 222,183評(píng)論 6 516
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件宪卿,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡莫绣,警方通過(guò)查閱死者的電腦和手機(jī)烟瞧,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,850評(píng)論 3 399
  • 文/潘曉璐 我一進(jìn)店門(mén)偷厦,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人燕刻,你說(shuō)我怎么就攤上這事∑鼠希” “怎么了卵洗?”我有些...
    開(kāi)封第一講書(shū)人閱讀 168,766評(píng)論 0 361
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)弥咪。 經(jīng)常有香客問(wèn)我过蹂,道長(zhǎng),這世上最難降的妖魔是什么聚至? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 59,854評(píng)論 1 299
  • 正文 為了忘掉前任酷勺,我火速辦了婚禮,結(jié)果婚禮上扳躬,老公的妹妹穿的比我還像新娘脆诉。我一直安慰自己,他們只是感情好贷币,可當(dāng)我...
    茶點(diǎn)故事閱讀 68,871評(píng)論 6 398
  • 文/花漫 我一把揭開(kāi)白布击胜。 她就那樣靜靜地躺著,像睡著了一般役纹。 火紅的嫁衣襯著肌膚如雪偶摔。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 52,457評(píng)論 1 311
  • 那天促脉,我揣著相機(jī)與錄音辰斋,去河邊找鬼。 笑死瘸味,一個(gè)胖子當(dāng)著我的面吹牛宫仗,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播硫戈,決...
    沈念sama閱讀 40,999評(píng)論 3 422
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼锰什,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起汁胆,我...
    開(kāi)封第一講書(shū)人閱讀 39,914評(píng)論 0 277
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤梭姓,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后嫩码,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體誉尖,經(jīng)...
    沈念sama閱讀 46,465評(píng)論 1 319
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,543評(píng)論 3 342
  • 正文 我和宋清朗相戀三年铸题,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了铡恕。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 40,675評(píng)論 1 353
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡丢间,死狀恐怖探熔,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情烘挫,我是刑警寧澤诀艰,帶...
    沈念sama閱讀 36,354評(píng)論 5 351
  • 正文 年R本政府宣布,位于F島的核電站饮六,受9級(jí)特大地震影響其垄,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜卤橄,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 42,029評(píng)論 3 335
  • 文/蒙蒙 一绿满、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧窟扑,春花似錦喇颁、人聲如沸。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 32,514評(píng)論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至厂抖,卻和暖如春茎毁,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背忱辅。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 33,616評(píng)論 1 274
  • 我被黑心中介騙來(lái)泰國(guó)打工七蜘, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人墙懂。 一個(gè)月前我還...
    沈念sama閱讀 49,091評(píng)論 3 378
  • 正文 我出身青樓橡卤,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國(guó)和親损搬。 傳聞我的和親對(duì)象是個(gè)殘疾皇子碧库,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,685評(píng)論 2 360

推薦閱讀更多精彩內(nèi)容