下圖來(lái)源:https://github.com/hoya012/deep_learning_object_detection
以下內(nèi)容來(lái)源:https://github.com/shanglianlm0525/PyTorch-Networks
典型網(wǎng)絡(luò)
典型的卷積神經(jīng)網(wǎng)絡(luò)包括:AlexNet、VGG恬偷、ResNet; InceptionV1悍手、InceptionV2、InceptionV3袍患、InceptionV4谓苟、Inception-ResNet。
AlexNet: ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, 2012
VGG: Very Deep Convolutional Networks for Large-Scale Image Recognition,Karen Simonyan,2014
ResNet: Deep Residual Learning for Image Recognition, He-Kaiming, 2015
InceptionV1: Going deeper with convolutions , Christian Szegedy , 2014
InceptionV2 and InceptionV3: Rethinking the Inception Architecture for Computer Vision , Christian Szegedy ,2015
InceptionV4 and Inception-ResNet: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning , Christian Szegedy ,2016
DenseNet: Densely Connected Convolutional Networks, 2017
ResNeXt: Aggregated Residual Transformations for Deep Neural Networks,2017
輕量級(jí)網(wǎng)絡(luò)
輕量級(jí)網(wǎng)絡(luò)包括:GhostNet协怒、MobileNets涝焙、MobileNetV2、MobileNetV3孕暇、ShuffleNet仑撞、ShuffleNet V2、SqueezeNet Xception MixNet GhostNet妖滔。
MobileNets: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
MobileNetV2: Inverted Residuals and Linear Bottlenecks
MobileNetV3:Searching for MobileNetV3
ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
SqueezeNet:AlexNet-level accuracy with 50x fewer parameters and < 0.5MB Model Size
Xception: Deep Learning with Depthwise Separable Convolutions
MixNet: Mixed Depthwise Convolutional Kernels
目標(biāo)檢測(cè)網(wǎng)絡(luò)
目標(biāo)檢測(cè)網(wǎng)絡(luò)包括:SSD隧哮、YOLO、YOLOv2座舍、YOLOv3沮翔、FCOS、FPN曲秉、RetinaNet Objects as Points采蚀、FSAF疲牵、CenterNet FoveaBox。
-
SSD: Single Shot MultiBox Detector,2016
-
YOLO:You Only Look Once: Unified, Real-Time Object Detection, 2016
-
YOLOv2: Better, Faster, Stronger,2017
-
YOLOv3: An Incremental Improvement, 2018
-
FCOS: Fully Convolutional One-Stage Object Detection, 2019
-
FPN:Feature Pyramid Networks for Object Detection, 2017
-
RetinaNet:Focal Loss For Dense Objective Detection
-
Objects as Points: Objects as Points,2019
-
FSAF: Feature Selective Anchor-Free Module for Single-Shot Object Detection, 2019
-
CenterNet: Keypoint Triplets for Object Detection, 2019
-
FoveaBox: Beyond Anchor-based Object Detector, 2019
語(yǔ)義分割網(wǎng)絡(luò)
語(yǔ)義分割網(wǎng)絡(luò)包括:FCN榆鼠、Fast-SCNN纲爸、LEDNet、LRNNet妆够、FisheyeMODNet识啦。
-
FCN: Fully Convolutional Networks for Semantic Segmentation
-
Fast-SCNN: Fast Semantic Segmentation Network
-
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation
-
LRNNet: A Light-Weighted Network with Efficient Reduced Non-Local Operation for Real-Time Semantic Segmentation
-
FisheyeMODNet: Moving Object detection on Surround-view Cameras for Autonomous Driving (2019)
實(shí)例分割網(wǎng)絡(luò)
實(shí)例分割網(wǎng)絡(luò)包括:PolarMask神妹。
PolarMask: Single Shot Instance Segmentation with Polar Representation ,2019
人臉檢測(cè)和識(shí)別網(wǎng)絡(luò)
人臉檢測(cè)和識(shí)別網(wǎng)絡(luò)包括:FaceBoxes颓哮、LFFD、VarGFaceNet鸵荠。
-
FaceBoxes: A CPU Real-time Face Detector with High Accuracy,2018
-
LFFD: A Light and Fast Face Detector for Edge Devices,2019
人體姿態(tài)識(shí)別網(wǎng)絡(luò)
人體姿態(tài)識(shí)別網(wǎng)絡(luò)包括:Stacked Hourglass冕茅、Networks Simple Baselines、LPN腰鬼。
StackedHG: Stacked Hourglass Networks for Human Pose Estimation ,2016
Simple Baselines:Simple Baselines for Human Pose Estimation and Tracking
LPN: Simple and Lightweight Human Pose Estimation
注意力機(jī)制網(wǎng)絡(luò)
注意力機(jī)制網(wǎng)絡(luò)包括:SE Net嵌赠、scSE塑荒、NL Net熄赡、GCNet、CBAM齿税。
-
SE Net:Squeeze-and-Excitation Networks,2017
-
scSE:Concurrent Spatial and Channel Squeeze & Excitation in Fully Convolutional Networks, 2018
-
NL Net:Non-Local neural networks,2018
-
GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond, 2019
-
CBAM: Convolutional Block Attention Module, 2018
人像分割網(wǎng)絡(luò)
人像分割網(wǎng)絡(luò)包括:SINet彼硫。
-
SINet:Extreme Lightweight Portrait Segmentation Networks