Given an array of integers, find out whether there are two distinct indices i and j in the array such that the difference between nums[i]
and nums[j]
is at most t and the difference between i and j is at most k.
題意
給一個(gè)整型數(shù)組梯澜,找到數(shù)組中是否存在兩個(gè)元素寞冯,它們的下標(biāo)差不超過(guò)k,元素值差不超過(guò)t晚伙。
分析
一開始對(duì)于每個(gè)元素吮龄,查找它后面k個(gè)元素是否與其值相差t以內(nèi)。這樣時(shí)間復(fù)雜度為O(kn)
咆疗,不能過(guò)超長(zhǎng)數(shù)組的測(cè)試螟蝙。所以可能存在O(nlogn)
的算法。我的做法如下:
- 首先給數(shù)組元素排序民傻,并保留原有下標(biāo)。示例如下:
0 | 1 | 2 | 3 | --> | 2 | 3 | 1 | 5 |
---|---|---|---|---|---|---|---|---|
5 | 3 | 1 | 2 | 排序 | 1 | 2 | 3 | 5 |
- 維護(hù)一個(gè)特殊的隊(duì)列(包括一個(gè)元素隊(duì)列和下標(biāo)隊(duì)列)场斑。該隊(duì)列要求隊(duì)首和隊(duì)尾的元素值相差不超過(guò)t漓踢。具體操作:
- (1) 如隊(duì)列為空則當(dāng)前元素入隊(duì)。
- (2) 如隊(duì)頭元素值與當(dāng)前待入隊(duì)元素值的差超過(guò)t漏隐,隊(duì)頭元素出隊(duì)(因?yàn)榻?jīng)排序后喧半,后面入隊(duì)的元素值只會(huì)比當(dāng)前元素更大,不可能出現(xiàn)與隊(duì)首元素值差小于t的情況青责,所以隊(duì)首元素已經(jīng)沒(méi)有繼續(xù)存在在隊(duì)列中的必要了)挺据。
- (3) 如對(duì)頭元素值與當(dāng)前待入隊(duì)元素值的差不超過(guò)t取具,則檢查二者的下標(biāo)差,如小于k扁耐,返回true暇检,否則當(dāng)前元素入隊(duì)。
- (4) 最后隊(duì)中剩余的元素只需比較隊(duì)首與隊(duì)尾的下標(biāo)值即可婉称。
-
時(shí)間復(fù)雜度块仆。顯然是排序的時(shí)間復(fù)雜度為
O(nlogn)
,維護(hù)隊(duì)列的過(guò)程每個(gè)元素出入隊(duì)列一次王暗。為O(n)
悔据。故總時(shí)間復(fù)雜度O(nlogn)
。
TLE代碼及AC代碼
class Solution {
public:
bool containsNearbyAlmostDuplicate(vector<int>& nums, int k, int t) {
for (int i = 1; i < nums.size(); ++i) {
for (int j = i - 1; j >= 0 && j > i - k; --j) {
if (abs(nums[i] - nums[j]) <= t) { return true; }
}
}
return false;
}
};
//Time Limit Exceeded
class Solution {
public:
bool containsNearbyAlmostDuplicate(vector<int>& nums, int k, int t) {
if (nums.empty()) return false;
vector<int> order(nums.size());
for (int i = 0; i != order.size(); ++i) {
order[i] = i;
}
//sort nums and orders
sortNumbers(nums, order, 0, nums.size() - 1);
//push and pop
queue<int> numsque;
queue<int> orderque;
//initialize queue
numsque.push(nums[0]);
orderque.push(order[0]);
for (int i = 1; i < nums.size();) {
if (numsque.empty()) {
numsque.push(nums[i]);
orderque.push(order[i]);
++i; continue;
}
int num = numsque.front();
int ord = orderque.front();
if (nums[i] > num + t) {
numsque.pop();
orderque.pop();
} else {
if (isOrderRangeSatisfactory(order[i], ord, k)) {
return true;
} else {
numsque.push(nums[i]);
orderque.push(order[i]);
++i;
}
}
}
int backOrder = orderque.back();
int frontOrder = orderque.front();
while (backOrder != frontOrder) {
if (isOrderRangeSatisfactory(backOrder, frontOrder, k)) {
break;
}
orderque.pop();
frontOrder = orderque.front();
}
if (backOrder == frontOrder) {
return false;
} else {
return true;
}
}
bool isOrderRangeSatisfactory(int i, int j, int k) {
return i <= j + k && i >= j - k;
}
void sortNumbers(vector<int> &nums, vector<int> &order, int bottom, int top) {
if (bottom >= top) return;
int i = bottom, j = top;
int saveValue = nums[i];
int saveIndex = order[i];
while (i < j) {
for (; i < j && nums[j] >= saveValue; --j);
nums[i] = nums[j];
order[i] = order[j];
for (; i < j && nums[i] <= saveValue; ++i);
nums[j] = nums[i];
order[j] = order[i];
}
nums[i] = saveValue;
order[i] = saveIndex;
sortNumbers(nums, order, bottom, i - 1);
sortNumbers(nums, order, i + 1, top);
}
};