SQL作業(yè)集:銀行貸款客戶特征分析

案例背景

借貸業(yè)務(wù)是大多數(shù)銀行重要的資金來(lái)源肢娘,通過(guò)資金的流動(dòng)賺取利潤(rùn),例如將吸引用戶辦理定期存款,將存款轉(zhuǎn)化為貸款出借給需求方賺取利息作為利潤(rùn)韭邓。提高存貸款流動(dòng)性即為銀行開展業(yè)務(wù)的基本邏輯。
本案例中的銀行為Thera Bank祠汇,該銀行大多數(shù)業(yè)務(wù)為儲(chǔ)蓄業(yè)務(wù)仍秤,為了將存款用戶更多地轉(zhuǎn)化為貸款客戶,銀行去年為存量客戶開展了一項(xiàng)推廣活動(dòng)可很,有部分客戶增加了貸款業(yè)務(wù)诗力。本數(shù)據(jù)集記錄的就是參與了此次活動(dòng)的用戶信息
該類分析能夠幫助零售營(yíng)銷部門制定精準(zhǔn)營(yíng)銷策略,以盡可能少的資源觸達(dá)客戶提高獲客成功率。該部門希望識(shí)別出更有可能購(gòu)買貸款的潛在客戶苇本,提高轉(zhuǎn)化成功率袜茧,同時(shí)降低廣告費(fèi)用。


使用mysql讀取csv數(shù)據(jù)

READ DATA LOCAL INFILE 'E:\bank_personal_loan_modelling.csv'  INTO TABLE bank.loan FIELDS TERMINATED BY ',';

Q1.本次推廣活動(dòng)的效果如何

SELECT 
    personal_loan,
    COUNT(personal_loan) AS Count,
    CONCAT(ROUND(COUNT(personal_loan)/(SELECT COUNT(*) FROM loan)*100,1),'%') AS Percentage
FROM loan
GROUP BY personal_loan;

在對(duì)于參與本次活動(dòng)的5000名用戶中瓣窄,共有480名用戶被轉(zhuǎn)化為貸款對(duì)象笛厦,占整體的9.6%,接下來(lái)的分析都圍繞著這480名貸款用戶展開


Q2.申請(qǐng)貸款的用戶年齡分布是什么樣的

SELECT MIN(age), MAX(age) FROM loan; # Check the upper bound and lower bound of age

ALTER TABLE loan ADD COLUMN age_group VARCHAR(255); # adding column

UPDATE loan SET age_group = CASE # binning 
    WHEN age >=20 AND Age <=29 THEN '20-30'  
    WHEN Age >=30 AND Age <=39 THEN '30-40'
    WHEN Age >=40 AND Age <=49 THEN '40-50'
    WHEN Age >=50 AND Age <=59 THEN '50-60'
    else '60-70'
    END;

SELECT
    age_group AS Age_Group,
    COUNT(personal_loan) AS Counts,
    CONCAT(ROUND(COUNT(personal_loan)/(SELECT COUNT(*) FROM loan WHERE personal_loan = 1)*100,1),'%') AS Percentage
FROM loan
WHERE personal_loan = 1
GROUP BY age_group WITH ROLLUP;

在這里為了增強(qiáng)查詢語(yǔ)句的可讀性俺夕,首先通過(guò)ALTER和UPDATE語(yǔ)句增加一欄對(duì)年齡進(jìn)行分組裳凸,而后展開分析。
不難看出30-60歲這一區(qū)間占據(jù)了貸款人數(shù)的70%以上,這部分人群收入穩(wěn)定償付能力較強(qiáng)


Q3. 貸款用戶的收入狀況

SELECT MAX(income), MIN(income) FROM loan; # Check the lower and upper bound of income

ALTER TABLE loan ADD COLUMN income_group VARCHAR(255);

UPDATE loan SET income_group = CASE
    WHEN Income >=60 AND Income <100 THEN '60000-100000'
    WHEN Income >=100 AND Income <140 THEN '100000-140000'
    WHEN Income >=140 AND Income <180 THEN '140000-180000'
    ELSE '>=180000' 
    END;
    
SELECT
    income_group AS Income_group,
    COUNT(personal_loan) AS Counts,
    CONCAT(ROUND(COUNT(personal_loan)/(SELECT COUNT(*) FROM loan WHERE personal_loan = 1)*100,1),'%') AS Percentage
FROM loan
WHERE personal_loan = 1
GROUP BY income_group WITH ROLLUP;

貸款客戶只要集中在100,000-180,000之間劝贸,收入較低的用戶可能沒達(dá)到授信標(biāo)準(zhǔn)姨谷,而收入較高的群體可能不需要個(gè)人貸款


Q4.貸款用戶的家庭人口特征如何

SELECT MIN(family), MAX(family) FROM loan;

    SELECT
        family AS Family_size,
        COUNT(*) AS Counts,
        SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END) AS Personal_loan_counts,
        ROUND((SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END)/COUNT(*)*100),1) AS Percentage
    FROM loan
    WHERE family = 1
UNION
    SELECT
        family AS Family_size,
        COUNT(*) AS Counts,
        SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END) AS Personal_loan_counts,
        ROUND((SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END)/COUNT(*)*100),1) AS Percentage
    FROM loan
    WHERE family = 2
UNION
    SELECT
        family AS Family_size,
        COUNT(*) AS Counts,
        SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END) AS Personal_loan_counts,
        ROUND((SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END)/COUNT(*)*100),1) AS Percentage
    FROM loan
    WHERE family = 3
UNION
    SELECT
        family AS Family_size,
        COUNT(*) AS Counts,
        SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END) AS Personal_loan_counts,
        ROUND((SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END)/COUNT(*)*100),1) AS Percentage
    FROM loan
    WHERE family = 4;

這里通過(guò)UNION語(yǔ)句連接多個(gè)列數(shù)相同的行記錄
總體來(lái)看,5000名客戶中單身人士稍多一些映九,但組間差距不是太大梦湘。3口和4口之家的貸款人數(shù)比例較高,可能是為解決平時(shí)生活開支而申請(qǐng)


Q5.每月信用卡消費(fèi)情況

SELECT MIN(ccavg), MAX(ccavg) FROM loan;
ALTER TABLE loan ADD COLUMN spending_group VARCHAR(255);
UPDATE loan SET spending_group = CASE 
    WHEN CCAvg >=0 AND CCAvg <1 THEN'0-1000'
    WHEN CCAvg >=1 AND CCAvg <2 THEN'1000-2000'
    WHEN CCAvg >=2 AND CCAvg <3 THEN'2000-3000'
    WHEN CCAvg >=3 AND CCAvg <4 THEN'3000-4000'
    WHEN CCAvg >=4 AND CCAvg <5 THEN'4000-5000'
    WHEN CCAvg >=5 AND CCAvg <6 THEN'5000-6000'
    WHEN CCAvg >=6 AND CCAvg <7 THEN'6000-7000'
    WHEN CCAvg >=7 AND CCAvg <8 THEN'7000-8000'
    WHEN CCAvg >=8 AND CCAvg <9 THEN'8000-9000'
    ELSE '9000-10000'
    END;
    
SELECT 
    spending_group,
    COUNT(*) AS Counts,
    SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END) AS Personal_loan_counts,
    CONCAT(ROUND((SUM(CASE WHEN personal_loan=1 THEN 1 ELSE 0 END)/COUNT(*)*100),2),'%') AS Percentage
FROM loan
GROUP BY spending_group;

信用卡消費(fèi)額在5000元以上的貸款意愿更為強(qiáng)烈


Q6. 貸款用戶是否原本有房屋在抵押

SELECT
    (SELECT COUNT(*) FROM loan WHERE personal_loan=1) AS Personal_loan,
    SUM(CASE WHEN mortgage > 0 THEN 1 ELSE 0 END) AS Mortage_count,
    CONCAT(ROUND(SUM(CASE WHEN mortgage > 0 THEN 1 ELSE 0 END)/(SELECT COUNT(*) FROM loan WHERE personal_loan=1) *100,1),'%') AS Mortgage_percentage,
    MAX(mortgage)*1000 AS MAX_mortgage,
    ROUND(AVG(mortgage)*1000) AS AVG_mortgage
FROM loan
WHERE personal_loan = 1 AND mortgage <> 0;

在貸款用戶中件甥,有房屋抵押的占35%捌议,最大抵押價(jià)值617000,均值為288131


Q7. 根據(jù)房屋抵押價(jià)值對(duì)用戶分類


SELECT MIN(mortgage), MAX(mortgage) FROM loan;

ALTER TABLE loan ADD COLUMN mortgage_group VARCHAR(255);
UPDATE loan SET mortgage_group = CASE
    WHEN mortgage = 0 THEN 0
    WHEN mortgage >=1 AND mortgage <100 THEN '1000-100000'
    WHEN mortgage >=100 AND mortgage <200 THEN '100000*200000'
    WHEN mortgage >=200 AND mortgage <300 THEN '200000-300000'
    WHEN mortgage >=300 AND mortgage <400 THEN '300000-400000'
    WHEN mortgage >= 400 AND mortgage <500 THEN '400000-500000'
    WHEN mortgage >= 500 AND mortgage <600 THEN '500000-600000'
    ELSE '>600000'
    END;
    
SELECT
    mortgage_group,
    COUNT(*) AS Mortgage_count,
    SUM(personal_loan) Personal_loan_count,
    CONCAT(ROUND(SUM(personal_loan)/COUNT(*)*100,1),'%') AS percentage
FROM loan
 GROUP BY mortgage_group;

在已經(jīng)辦理了房屋抵押的用戶中引有,房屋抵押價(jià)值在300,000以上的辦理個(gè)人貸款的意愿更高


最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末瓣颅,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子轿曙,更是在濱河造成了極大的恐慌弄捕,老刑警劉巖,帶你破解...
    沈念sama閱讀 222,183評(píng)論 6 516
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件导帝,死亡現(xiàn)場(chǎng)離奇詭異守谓,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)您单,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,850評(píng)論 3 399
  • 文/潘曉璐 我一進(jìn)店門斋荞,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人虐秦,你說(shuō)我怎么就攤上這事平酿。” “怎么了悦陋?”我有些...
    開封第一講書人閱讀 168,766評(píng)論 0 361
  • 文/不壞的土叔 我叫張陵蜈彼,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我俺驶,道長(zhǎng)幸逆,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 59,854評(píng)論 1 299
  • 正文 為了忘掉前任,我火速辦了婚禮还绘,結(jié)果婚禮上楚昭,老公的妹妹穿的比我還像新娘。我一直安慰自己拍顷,他們只是感情好抚太,可當(dāng)我...
    茶點(diǎn)故事閱讀 68,871評(píng)論 6 398
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著昔案,像睡著了一般尿贫。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上爱沟,一...
    開封第一講書人閱讀 52,457評(píng)論 1 311
  • 那天帅霜,我揣著相機(jī)與錄音,去河邊找鬼呼伸。 笑死,一個(gè)胖子當(dāng)著我的面吹牛钝尸,可吹牛的內(nèi)容都是我干的括享。 我是一名探鬼主播,決...
    沈念sama閱讀 40,999評(píng)論 3 422
  • 文/蒼蘭香墨 我猛地睜開眼珍促,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼铃辖!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起猪叙,我...
    開封第一講書人閱讀 39,914評(píng)論 0 277
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤娇斩,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后穴翩,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體犬第,經(jīng)...
    沈念sama閱讀 46,465評(píng)論 1 319
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,543評(píng)論 3 342
  • 正文 我和宋清朗相戀三年芒帕,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了歉嗓。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 40,675評(píng)論 1 353
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡背蟆,死狀恐怖鉴分,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情带膀,我是刑警寧澤志珍,帶...
    沈念sama閱讀 36,354評(píng)論 5 351
  • 正文 年R本政府宣布,位于F島的核電站垛叨,受9級(jí)特大地震影響伦糯,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 42,029評(píng)論 3 335
  • 文/蒙蒙 一舔株、第九天 我趴在偏房一處隱蔽的房頂上張望莺琳。 院中可真熱鬧,春花似錦载慈、人聲如沸惭等。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,514評(píng)論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)辞做。三九已至,卻和暖如春寡具,著一層夾襖步出監(jiān)牢的瞬間秤茅,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 33,616評(píng)論 1 274
  • 我被黑心中介騙來(lái)泰國(guó)打工童叠, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留框喳,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 49,091評(píng)論 3 378
  • 正文 我出身青樓厦坛,卻偏偏與公主長(zhǎng)得像五垮,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子杜秸,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,685評(píng)論 2 360