【知識圖譜系列】知識圖譜表示學(xué)習(xí)綜述 | 近30篇優(yōu)秀論文

<p><span style="font-size:15px"><span>本文分享一篇知識圖譜表示學(xué)習(xí)匯報</span><span>ppt</span><span>,將知識圖譜表示學(xué)習(xí)方法粗略分為四大類考传,涉及將近</span><span>30</span><span>篇優(yōu)秀論文盲厌,只簡單介紹其核心思想坚俗,完整匯報</span><span>ppt</span><span>獲取請關(guān)注公眾號【AI機器學(xué)習(xí)與知識圖譜】回復(fù)關(guān)鍵字:</span></span><span style="font-size:15px"><strong>知識圖譜表示學(xué)習(xí)</strong></span></p><p>
</p><p><strong><span style="font-size:15px"><span>1</span><span>、</span><span>翻譯距離模型</span></span></strong><span style="font-size:15px"><span>:包括</span><span>TransH</span><span>尸昧、</span><span>TransR</span><span>揩页、</span><span>TransD</span><span>、</span><span>TranSparse</span><span>烹俗、</span><span>TransM</span><span>爆侣、</span><span>MianfoldE</span><span>、</span><span>TransF</span><span>幢妄、</span><span>TransA</span><span>兔仰、</span><span>KG2E</span><span>、</span><span>TransG</span><span>磁浇、</span><span>UM</span><span>斋陪、</span><span>SE</span><span>模型等;</span></span></p><p><strong><span style="font-size:15px"><span>2</span><span>置吓、語義匹配模型</span></span></strong><span style="font-size:15px"><span>:包括</span><span>RESCAL</span><span>无虚、</span><span>DistMult</span><span>、</span><span>HoLE</span><span>衍锚、</span><span>ComplEx</span><span>友题、</span><span>ANALOGY</span><span>、</span><span>SNE</span><span>戴质、</span><span>NTN</span><span>度宦、</span><span>MLP</span><span>、</span><span>NAM</span><span>模型等告匠;</span></span></p><p><strong><span style="font-size:15px"><span>3</span><span>戈抄、隨機游走模型</span></span></strong><span style="font-size:15px"><span>:包括</span><span>DeepWalk</span><span>、</span><span>LINE</span><span>后专、</span><span>node2vec</span><span>模型等划鸽;</span></span></p><p><strong><span style="font-size:15px"><span>4</span><span>、子圖匯聚模型</span></span></strong><span style="font-size:15px"><span>:包括</span><span>GCN</span><span>、</span><span>GAT</span><span>裸诽、</span><span>GraphSage</span><span>模型等嫂用。</span></span></p><p><span style="font-size:15px">
</span></p><p><span style="font-size:20px"><strong>Motivation</strong></span></p><p>
</p><p><span style="font-size:15px"><span>知識圖譜是由實體(節(jié)點)和關(guān)系(不同類型的邊)組成的多關(guān)系圖,每條邊連接頭尾兩個實體丈冬,通常用</span><span>SPO</span><span>三元組進行表示(</span><span>subject,predicate, object</span><span>)嘱函,被稱為一個事實。雖然知識圖譜在表示結(jié)構(gòu)化數(shù)據(jù)方面很有效埂蕊,但這類三元組的潛在符號特性通常使得</span><span>KGs</span><span>很難操作往弓。</span></span></p><p>
</p><p><span style="font-size:15px"><span>因此知識圖譜表示學(xué)習(xí)便成為了一個熱門的研究方向,知識圖譜嵌入的關(guān)鍵思想是將圖譜中的實體</span><span>entity</span><span>和關(guān)系</span><span>relation</span><span>轉(zhuǎn)化為連續(xù)的向量粒梦,在保留</span><span>KG</span><span>原有結(jié)構(gòu)的同時使得操作方便亮航。于是便可將</span><span>entityembedding</span><span>和</span><span>relationembedding</span><span>用到下游各種任務(wù)中,例如圖譜補全匀们,關(guān)系抽取缴淋,實體分類,實體鏈接及實體融合等</span></span></p><p>
</p><p><span style="font-size:15px">知識圖譜嵌入技術(shù)經(jīng)典三個步驟:</span></p><p><span style="font-size:15px"><span>1</span><span>泄朴、</span><span>representingentities and relations</span></span></p><p><span style="font-size:15px"><span>2</span><span>重抖、</span><span>defininga scoring function</span></span></p><p><span style="font-size:15px"><span>3</span><span>、</span><span>learningentity and relation representations</span><span>(最大化所有觀測事實的置信度</span><span>plausibility</span><span>)</span></span></p><p><span style="font-size:15px"><span>根據(jù)</span><span>scoringfunction</span><span>區(qū)別分為</span><span>distance-based scoring functions</span><span>和</span><span>similarity-based scoring functions</span></span></p><p><span style="font-size:15px">
</span></p><p><span style="font-size:20px"><strong>Papers</strong></span></p><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-7705c15ad6925e9a.jpeg" img-data="{"format":"jpeg","size":99231,"height":600,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-5e1bedab6303c7c7.jpeg" img-data="{"format":"jpeg","size":40440,"height":585,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-88995591f0a469d6.jpeg" img-data="{"format":"jpeg","size":95862,"height":579,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-89aa2cd4b9ac6794.jpeg" img-data="{"format":"jpeg","size":44012,"height":523,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-ef1052927f117779.jpeg" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-d73958dc3d41d0be.jpeg" img-data="{"format":"jpeg","size":86715,"height":641,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-43548c26a7e66bb6.jpeg" img-data="{"format":"jpeg","size":81019,"height":596,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-6ebeb7f7c7c8c8e5.jpeg" img-data="{"format":"jpeg","size":52391,"height":548,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-b334e44e5acf7d00.jpeg" img-data="{"format":"jpeg","size":87769,"height":586,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-2b800a1507cdc8a4.jpeg" img-data="{"format":"jpeg","size":104003,"height":579,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-9efe7e43893b7495.jpeg" img-data="{"format":"jpeg","size":57531,"height":544,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-5d9cc168cdb1a1eb.jpeg" img-data="{"format":"jpeg","size":84030,"height":610,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-c165455e981c0b15.jpeg" img-data="{"format":"jpeg","size":91587,"height":606,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-32bad0844fb20448.jpeg" img-data="{"format":"jpeg","size":104973,"height":570,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-f6ffe15483aadc7a.jpeg" img-data="{"format":"jpeg","size":71939,"height":587,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-4555a84da4508957.jpeg" img-data="{"format":"jpeg","size":35470,"height":321,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-53ec1a824148ec36.jpeg" img-data="{"format":"jpeg","size":61945,"height":589,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-fa69d7fc905c7b8b.jpeg" img-data="{"format":"jpeg","size":54526,"height":494,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-1dfc4c848e2f6adb.jpeg" img-data="{"format":"jpeg","size":62667,"height":465,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-b8e5233cc37be995.jpeg" img-data="{"format":"jpeg","size":66425,"height":554,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><div class="image-package"><img src="https://upload-images.jianshu.io/upload_images/26011021-23915df046d3981e.jpeg" img-data="{"format":"jpeg","size":84630,"height":594,"width":1080}" class="uploaded-img" style="min-height:200px;min-width:200px;" width="auto" height="auto"/>
</div><p>
</p><p>
</p><p><span style="font-size:18px"><strong>往期精彩</strong></span></p><p>
</p><p><span style="font-size:14px">【知識圖譜系列】探索DeepGNN中Over-Smoothing問題</span>
</p><p/><p><span style="font-size:14px">【知識圖譜系列】多關(guān)系神經(jīng)網(wǎng)絡(luò)CompGCN</span></p><p>各大AI研究院共35場NLP算法崗面經(jīng)奉上
</p><p/><p>干貨 | Attention注意力機制超全綜述</p><p><span style="font-size:14px"/></p><p><span style="font-size:14px">干貨|一文弄懂機器學(xué)習(xí)中偏差和方差</span></p><p><span style="font-size:14px">Transformer模型細(xì)節(jié)理解及Tensorflow實現(xiàn)</span>
</p><p><span style="font-size:14px"/></p><p><span style="font-size:14px">機器學(xué)習(xí)算法篇:最大似然估計證明最小二乘法合理性</span>
</p><p><span style="font-size:14px"/></p><p>
</p>

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末祖灰,一起剝皮案震驚了整個濱河市钟沛,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌局扶,老刑警劉巖恨统,帶你破解...
    沈念sama閱讀 206,968評論 6 482
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異三妈,居然都是意外死亡畜埋,警方通過查閱死者的電腦和手機,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,601評論 2 382
  • 文/潘曉璐 我一進店門畴蒲,熙熙樓的掌柜王于貴愁眉苦臉地迎上來悠鞍,“玉大人,你說我怎么就攤上這事模燥】Ъ溃” “怎么了?”我有些...
    開封第一講書人閱讀 153,220評論 0 344
  • 文/不壞的土叔 我叫張陵蔫骂,是天一觀的道長么翰。 經(jīng)常有香客問我,道長辽旋,這世上最難降的妖魔是什么硬鞍? 我笑而不...
    開封第一講書人閱讀 55,416評論 1 279
  • 正文 為了忘掉前任,我火速辦了婚禮戴已,結(jié)果婚禮上固该,老公的妹妹穿的比我還像新娘。我一直安慰自己糖儡,他們只是感情好伐坏,可當(dāng)我...
    茶點故事閱讀 64,425評論 5 374
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著握联,像睡著了一般桦沉。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上金闽,一...
    開封第一講書人閱讀 49,144評論 1 285
  • 那天纯露,我揣著相機與錄音,去河邊找鬼代芜。 笑死埠褪,一個胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的挤庇。 我是一名探鬼主播钞速,決...
    沈念sama閱讀 38,432評論 3 401
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼嫡秕!你這毒婦竟也來了渴语?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 37,088評論 0 261
  • 序言:老撾萬榮一對情侶失蹤昆咽,失蹤者是張志新(化名)和其女友劉穎驾凶,沒想到半個月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體掷酗,經(jīng)...
    沈念sama閱讀 43,586評論 1 300
  • 正文 獨居荒郊野嶺守林人離奇死亡调违,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 36,028評論 2 325
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了汇在。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片翰萨。...
    茶點故事閱讀 38,137評論 1 334
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖糕殉,靈堂內(nèi)的尸體忽然破棺而出亩鬼,到底是詐尸還是另有隱情,我是刑警寧澤阿蝶,帶...
    沈念sama閱讀 33,783評論 4 324
  • 正文 年R本政府宣布雳锋,位于F島的核電站,受9級特大地震影響羡洁,放射性物質(zhì)發(fā)生泄漏玷过。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 39,343評論 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望辛蚊。 院中可真熱鬧粤蝎,春花似錦、人聲如沸袋马。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,333評論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽虑凛。三九已至碑宴,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間桑谍,已是汗流浹背延柠。 一陣腳步聲響...
    開封第一講書人閱讀 31,559評論 1 262
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留锣披,地道東北人贞间。 一個月前我還...
    沈念sama閱讀 45,595評論 2 355
  • 正文 我出身青樓,卻偏偏與公主長得像盈罐,于是被迫代替她去往敵國和親榜跌。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點故事閱讀 42,901評論 2 345

推薦閱讀更多精彩內(nèi)容