Nuttx相關(guān)的歷史文章
介紹
信號(hào)是在軟件層次上對(duì)中斷機(jī)制的模擬赚窃,在原理上說(shuō),一個(gè)任務(wù)接收到一個(gè)信號(hào),與CPU接收到中斷請(qǐng)求是一致的锰悼。信號(hào)是異步的,任務(wù)不必通過(guò)任何操作來(lái)等待信號(hào)的到達(dá)团赏,它甚至不知道信號(hào)何時(shí)會(huì)到達(dá)箕般。
信號(hào)的來(lái)源包括:
- 硬件來(lái)源,比如按鍵觸發(fā)
- 軟件來(lái)源舔清,比如kill丝里,raise等系統(tǒng)函數(shù),比如一些非法運(yùn)算操作等
任務(wù)和信號(hào)
Nuttx
為進(jìn)程和線程提供了信號(hào)接口体谒,可以在任務(wù)上下文中或在任務(wù)上下文之間杯聚,通過(guò)信號(hào)這種異步通信機(jī)制,來(lái)改變?nèi)蝿?wù)的控制流营密。在任何一個(gè)任務(wù)中或中斷處理函數(shù)中械媒,可以給指定TASK ID的其他任務(wù)發(fā)送信號(hào)。接收到信號(hào)的任務(wù)將在具有優(yōu)先級(jí)時(shí)執(zhí)行任務(wù)指定的信號(hào)處理函數(shù)。信號(hào)處理程序是一個(gè)用戶提供的函數(shù)纷捞,它綁定到一個(gè)特定的信號(hào)痢虹,并在接收到信號(hào)時(shí)執(zhí)行任何必要的操作。默認(rèn)情況下主儡,沒有對(duì)任何信號(hào)設(shè)置預(yù)定義動(dòng)作奖唯,所有信號(hào)的默認(rèn)操作都是忽略(如果用戶沒有提供信號(hào)處理函數(shù)),從這個(gè)意義上說(shuō)糜值,所有Nuttx
默認(rèn)情況下都是實(shí)時(shí)信號(hào)丰捷。
任務(wù)組
Nuttx
既支持任務(wù)task
,又支持線程pthreads
寂汇。task
和pthreads
的主要區(qū)別在于task
之間的獨(dú)立性要高得多病往。task
可以創(chuàng)建pthreads
,這些pthreads
將共享task
的資源骄瓣。主task
線程和它所包含的pthreads
停巷,一起被稱為任務(wù)組,在Nuttx
中使用任務(wù)組來(lái)模擬POSIX
的進(jìn)程榕栏。
發(fā)送信號(hào)給多線程任務(wù)組
多線程任務(wù)組中的信號(hào)行為是復(fù)雜的畔勤。
Nuttx
使用任務(wù)組模擬進(jìn)程,并遵循POSIX
規(guī)則進(jìn)行信號(hào)發(fā)送扒磁。通常庆揪,當(dāng)向一個(gè)任務(wù)組發(fā)送信號(hào)時(shí),需要向創(chuàng)建該任務(wù)組的主task
線程的ID
號(hào)發(fā)送(實(shí)際上妨托,其他任務(wù)不應(yīng)該知道該任務(wù)組中創(chuàng)建的內(nèi)部線程ID
)缸榛。任務(wù)組會(huì)記住該ID
(即使主任務(wù)線程退出)。
當(dāng)向一個(gè)多線程任務(wù)組發(fā)送信號(hào)時(shí)兰伤,會(huì)出現(xiàn)以下情況:
- 當(dāng)任務(wù)組接收到一個(gè)信號(hào)仔掸,那么任務(wù)組中只有一個(gè)不阻塞該信號(hào)的不確定線程會(huì)接收到信號(hào)。
- 當(dāng)任務(wù)組接收到一個(gè)信號(hào)医清,并且有多個(gè)線程在等待該信號(hào),有且只有一個(gè)不確定的線程將接收該信號(hào)卖氨。
可以使用
sigprocmask()
或pthread_sigmask()
接口來(lái)屏蔽信號(hào)会烙。信號(hào)被屏蔽后,將不會(huì)在具有屏蔽該信號(hào)的線程中接收到筒捺。在創(chuàng)建新的線程時(shí)柏腻,新線程將會(huì)繼承父線程的信號(hào)掩碼,因此如果在一個(gè)線程上阻塞某個(gè)信號(hào)系吭,那么在它所創(chuàng)建的線程中也會(huì)阻塞該信號(hào)五嫂。
可以通過(guò)信號(hào)掩碼來(lái)控制哪個(gè)線程接收信號(hào),例如,創(chuàng)建一個(gè)線程沃缘,該線程的唯一目的是捕獲某個(gè)特定的信號(hào)并且做出響應(yīng):在主任務(wù)中阻塞信號(hào)躯枢;這時(shí)該信號(hào)會(huì)在任務(wù)組中被所有的線程阻塞。在一個(gè)“信號(hào)處理線程”中槐臀,使能了信號(hào)锄蹂,這個(gè)線程將是唯一接收信號(hào)的線程。
API接口
本來(lái)想一上來(lái)就分析數(shù)據(jù)結(jié)構(gòu)水慨,看了一圈源代碼得糜,發(fā)現(xiàn)還是先從應(yīng)用層的API入手,有個(gè)全面的認(rèn)識(shí)后晰洒,再逐層去分析底層的原理朝抖。
API如下:
int sigemptyset(sigset_t *set) ; /* 清空set信號(hào)集, 排除所有信號(hào) */
int sigfillset(sigset_t *set); /* 置位set信號(hào)集谍珊,包含所有信號(hào) */
int sigaddset(sigset_t *set, int signo); /* 將信號(hào)signo添加進(jìn)set信號(hào)集 */
int sigdelset(sigset_t *set, int signo); /* 將signo信號(hào)從set信號(hào)集中刪除 */
int sigismember(const sigset_t *set, int signo); /* 判斷signo信號(hào)是否屬于set信號(hào)集 */
int sigaction(int signo, const struct sigaction *act,
struct sigaction *oact); /* 信號(hào)安裝函數(shù)治宣,將sigaction與一個(gè)特定的信號(hào)進(jìn)行綁定,sigaction結(jié)構(gòu)體在下文會(huì)介紹 */
int sigignore(int signo); /* 忽略signo信號(hào) */
void (*sigset(int signo, void (*disp)(int)))(int); /* 改變signo信號(hào)的配置, disp可以是SIG_DFL周偎、SIG_IGN鸥鹉,或者信號(hào)處理Handler */
int sigprocmask(int how, const sigset_t *set, sigset_t *oset); /* 根據(jù)how的策略,來(lái)改變當(dāng)前阻塞的信號(hào)集 */
int sighold(int signo); /* 將signo信號(hào)添加進(jìn)進(jìn)程的阻塞信號(hào)集 */
int sigrelse(int signo); /* 將sigo信號(hào)從進(jìn)程的阻塞信號(hào)集中移除 */
int sigpending(sigset_t *set); /* 返回在阻塞期間收到的阻塞信號(hào)的集合 */
int sigsuspend(const sigset_t *set); /* 在接收到某個(gè)信號(hào)之前豌拙,臨時(shí)用set替換進(jìn)程的信號(hào)掩碼,并暫停進(jìn)程執(zhí)行,直到收到信號(hào)為止 */
int sigpause(int signo); /* 將signo信號(hào)從信號(hào)掩碼中移除题暖,暫停進(jìn)程按傅,直到收到信號(hào)為止 */
int sigwaitinfo(const sigset_t *set, struct siginfo *info); /* 調(diào)用的sigtimedwait */
int sigtimedwait(const sigset_t *set, struct siginfo *info,
const struct timespec *timeout); /* 將set作為阻塞信號(hào)集,當(dāng)多個(gè)信號(hào)到達(dá)時(shí)胧卤,返回最小的返回唯绍,如果沒有信號(hào)到達(dá),在timeout時(shí)間內(nèi)枝誊,進(jìn)程會(huì)暫停况芒,直到收到信號(hào)或者時(shí)間到期 */
int sigqueue (int tid, int signo, union sigval value); /* 向tid Task發(fā)送signo信號(hào),信號(hào)攜帶value數(shù)據(jù) */
int kill(pid_t pid, int sig); /* 向pid Task發(fā)送sig信號(hào) */
int pause(void); /* 暫停當(dāng)前調(diào)用線程叶撒,直到收到一個(gè)non-blocked信號(hào) */
從上述接口中可以看出绝骚,大致可以分為以下幾類:
- 對(duì)信號(hào)集/信號(hào)本身的操作:比如信號(hào)集的清空與置位、將信號(hào)從信號(hào)集中刪除祠够、增加信號(hào)到信號(hào)集中压汪、判斷信號(hào)是否屬于信號(hào)集等
- 對(duì)信號(hào)的行為響應(yīng):比如首先需要信號(hào)安裝、設(shè)置信號(hào)的Handler古瓤、忽略某個(gè)信號(hào)止剖、阻塞某些信號(hào)腺阳、在接收到某些信號(hào)前暫停當(dāng)前進(jìn)程(會(huì)涉及到任務(wù)的切換)等
- 發(fā)送信號(hào):向某個(gè)特定的task發(fā)送信號(hào),信號(hào)中還能攜帶數(shù)據(jù)
數(shù)據(jù)結(jié)構(gòu)
數(shù)據(jù)結(jié)構(gòu)又分為兩部分:Kernel部分和User部分穿香,其中Kernel部分也需要用到User部分的定義亭引。
User部分,定義在
include/signal.h
中扔水,主要描述信號(hào)的基本數(shù)據(jù)結(jié)構(gòu)以及API接口
- 信號(hào)集的定義痛侍,總共包含32中信號(hào),Nuttx提供了部分信號(hào)魔市,其余的用戶可以自定義
/* This defines a set of 32 signals (numbered 0 through 31).
* REVISIT: Signal 0 is, however, not generally usable since that value has
* special meaning in some circumstances (e.g., kill()).
*/
typedef uint32_t sigset_t; /* Bit set of 32 signals */
#define __SIGSET_T_DEFINED 1
/* Signal set management definitions and macros. */
#define NULL_SIGNAL_SET ((sigset_t)0x00000000)
#define ALL_SIGNAL_SET ((sigset_t)0xffffffff)
#define MIN_SIGNO 0
#define MAX_SIGNO 31
#define GOOD_SIGNO(s) ((((unsigned)(s))<=MAX_SIGNO))
#define SIGNO2SET(s) ((sigset_t)1 << (s))
/* A few of the real time signals are used within the OS. They have
* default values that can be overridden from the configuration file. The
* rest are all user signals.
*
* The signal number zero is wasted for the most part. It is a valid
* signal number, but has special meaning at many interfaces (e.g., Kill()).
*
* These are the semi-standard signal definitions:
*/
#define SIGUSR1 1 /* User signal 1 */
#define SIGUSR2 2 /* User signal 2 */
#define SIGALRM 3 /* Default signal used with POSIX timers (used only */
/* no other signal is provided) */
#define SIGCHLD 4 /* Used by child threads to signal parent thread */
#define SIGPOLL 5 /* Sent when an asynchronous I/O event occurs */
/* The following are non-standard signal definitions */
#define SIGCONDTIMEDOUT 16 /* Used in the implementation of pthread_cond_timedwait */
#define SIGWORK 17 /* Used to wake up the work queue */
- 信號(hào)事件的定義主届,主要用于向消息隊(duì)列發(fā)送信號(hào),通知某個(gè)task隊(duì)列中已經(jīng)有消息了
/* Values for the sigev_notify field of struct sigevent */
#define SIGEV_NONE 0 /* No asynchronous notification is delivered */
#define SIGEV_SIGNAL 1 /* Notify via signal,with an application-defined value */
#ifdef CONFIG_SIG_EVTHREAD
#define SIGEV_THREAD 3 /* A notification function is called */
#endif
/* This defines the type of the siginfo si_value field */
union sigval
{
int sival_int; /* Integer value */
FAR void *sival_ptr; /* Pointer value */
};
/* This structure contains elements that define a queue signal. The following is
* used to attach a signal to a message queue to notify a task when a message is
* available on a queue
*/
#ifdef CONFIG_CAN_PASS_STRUCTS
typedef CODE void (*sigev_notify_function_t)(union sigval value);
#else
typedef CODE void (*sigev_notify_function_t)(FAR void *sival_ptr);
#endif
struct sigevent
{
uint8_t sigev_notify; /* Notification method: SIGEV_SIGNAL, SIGEV_NONE, or SIGEV_THREAD */
uint8_t sigev_signo; /* Notification signal */
union sigval sigev_value; /* Data passed with notification */
#ifdef CONFIG_SIG_EVTHREAD
sigev_notify_function_t sigev_notify_function; /* Notification function */
FAR pthread_attr_t *sigev_notify_attributes; /* Notification attributes (not used) */
#endif
};
- 信號(hào)的定義待德,描述信號(hào)的內(nèi)部細(xì)節(jié)信息君丁,用于在信號(hào)Handler中的參數(shù)傳遞
/* These are the possible values of the signfo si_code field */
#define SI_USER 0 /* Signal sent from kill, raise, or abort */
#define SI_QUEUE 1 /* Signal sent from sigqueue */
#define SI_TIMER 2 /* Signal is result of timer expiration */
#define SI_ASYNCIO 3 /* Signal is the result of asynch IO completion */
#define SI_MESGQ 4 /* Signal generated by arrival of a message on an */
/* empty message queue */
#define CLD_EXITED 5 /* Child has exited (SIGCHLD only) */
#define CLD_KILLED 6 /* Child was killed (SIGCHLD only) */
#define CLD_DUMPED 7 /* Child terminated abnormally (SIGCHLD only) */
#define CLD_TRAPPED 8 /* Traced child has trapped (SIGCHLD only) */
#define CLD_STOPPED 9 /* Child has stopped (SIGCHLD only) */
#define CLD_CONTINUED 10 /* Stopped child had continued (SIGCHLD only) */
/* The following types is used to pass parameters to/from signal handlers */
struct siginfo
{
uint8_t si_signo; /* Identifies signal */
uint8_t si_code; /* Source: SI_USER, SI_QUEUE, SI_TIMER, SI_ASYNCIO, or SI_MESGQ */
uint8_t si_errno; /* Zero or errno value associated with signal */
union sigval si_value; /* Data passed with signal */
#ifdef CONFIG_SCHED_HAVE_PARENT
pid_t si_pid; /* Sending task ID */
int si_status; /* Exit value or signal (SIGCHLD only). */
#endif
};
typedef struct siginfo siginfo_t;
#define __SIGINFO_T_DEFINED 1
- 信號(hào)action的定義,當(dāng)信號(hào)deliver的時(shí)候将宪,Task所采取的行動(dòng)绘闷,其中sigaction中sa_mask位域,表示的是當(dāng)Handler在執(zhí)行期間较坛,需要阻塞的信號(hào)
/* struct sigaction flag values */
#define SA_NOCLDSTOP (1 << 0) /* Do not generate SIGCHILD when
* children stop (ignored) */
#define SA_SIGINFO (1 << 1) /* Invoke the signal-catching function
* with 3 args instead of 1
* (always assumed) */
#define SA_NOCLDWAIT (1 << 2) /* If signo=SIGCHLD, exit status of child
* processes will be discarded */
/* Special values of of sa_handler used by sigaction and sigset. They are all
* treated like NULL for now. This is okay for SIG_DFL and SIG_IGN because
* in NuttX, the default action for all signals is to ignore them.
*/
#define SIG_ERR ((_sa_handler_t)-1) /* And error occurred */
#define SIG_DFL ((_sa_handler_t)0) /* Default is SIG_IGN for all signals */
#define SIG_IGN ((_sa_handler_t)0) /* Ignore the signal */
#define SIG_HOLD ((_sa_handler_t)1) /* Used only with sigset() */
/* Non-standard convenience definition of signal handling function types.
* These should be used only internally within the NuttX signal logic.
*/
typedef CODE void (*_sa_handler_t)(int signo);
typedef CODE void (*_sa_sigaction_t)(int signo, FAR siginfo_t *siginfo,
FAR void *context);
/* The following structure defines the action to take for given signal */
struct sigaction
{
union
{
_sa_handler_t _sa_handler;
_sa_sigaction_t _sa_sigaction;
} sa_u;
sigset_t sa_mask;
int sa_flags;
};
/* Definitions that adjust the non-standard naming */
#define sa_handler sa_u._sa_handler
#define sa_sigaction sa_u._sa_sigaction
Kernle部分印蔗,定義在include/sched/signal/signal.h中,主要描述了Kernel中是如何實(shí)現(xiàn)信號(hào)機(jī)制的
- 描述一個(gè)信號(hào)的action的結(jié)構(gòu)丑勤,指針flink將sigactq鏈接起來(lái)管理华嘹,系統(tǒng)注冊(cè)一個(gè)信號(hào),底層將用一個(gè)sigactq結(jié)構(gòu)體來(lái)對(duì)應(yīng)
/* The following defines the sigaction queue entry */
struct sigactq
{
FAR struct sigactq *flink; /* Forward link */
struct sigaction act; /* Sigaction data */
uint8_t signo; /* Signal associated with action */
};
typedef struct sigactq sigactq_t;
- 描述pending信號(hào)(未決信號(hào))的結(jié)構(gòu)法竞,其中info中包括信號(hào)的詳細(xì)信息耙厚,該信號(hào)會(huì)通過(guò)flink鏈接管理
/* The following defines the queue structure within each TCB to hold pending
* signals received by the task. These are signals that cannot be processed
* because: (1) the task is not waiting for them, or (2) the task has no
* action associated with the signal.
*/
struct sigpendq
{
FAR struct sigpendq *flink; /* Forward link */
siginfo_t info; /* Signal information */
uint8_t type; /* (Used to manage allocations) */
};
typedef struct sigpendq sigpendq_t;
- 描述需要被執(zhí)行的信號(hào)節(jié)隊(duì)列點(diǎn)結(jié)構(gòu),當(dāng)任務(wù)注冊(cè)了信號(hào)并接收到信號(hào)后岔霸,會(huì)分配一個(gè)信號(hào)隊(duì)列節(jié)點(diǎn)薛躬,將該節(jié)點(diǎn)掛載到任務(wù)tcb->sigpendactionq鏈表上等待運(yùn)行信號(hào)服務(wù)函數(shù)。其中action指向信號(hào)處理函數(shù)呆细,mask用于當(dāng)信號(hào)處理函數(shù)運(yùn)行時(shí)阻塞其他信號(hào)型宝,info是信號(hào)的詳細(xì)信息
/* The following defines the queue structure within each TCB to hold queued
* signal actions that need action by the task
*/
struct sigq_s
{
FAR struct sigq_s *flink; /* Forward link */
union
{
void (*sighandler)(int signo, siginfo_t *info, void *context);
} action; /* Signal action */
sigset_t mask; /* Additional signals to mask while the
* the signal-catching function executes */
siginfo_t info; /* Signal information */
uint8_t type; /* (Used to manage allocations) */
};
typedef struct sigq_s sigq_t;
上述三種結(jié)構(gòu),
struct sigactq
描述信號(hào)的action絮爷,struct sigpendq
描述未決的信號(hào)诡曙,struct sigq_s
描述的是信號(hào)與action的對(duì)應(yīng)關(guān)系,可以認(rèn)為是一個(gè)紐帶略水,將信號(hào)和Action綁定到一起。這幾個(gè)結(jié)構(gòu)的名字讓我懵逼了好久劝萤。還有更懵逼的在下邊渊涝。
基于上述的三個(gè)結(jié)構(gòu)體,系統(tǒng)維護(hù)了5個(gè)全局隊(duì)列,用于最終信號(hào)的處理跨释,信號(hào)處理過(guò)程中胸私,這三個(gè)結(jié)構(gòu)體的節(jié)點(diǎn),將在這5個(gè)全局隊(duì)列中進(jìn)行流動(dòng)鳖谈,有點(diǎn)類似于任務(wù)調(diào)度中任務(wù)隊(duì)列的意思岁疼。
- 存放action的隊(duì)列,存放
sigactq_t
缆娃,用于Action資源的分配
/* The g_sigfreeaction data structure is a list of available signal action
* structures.
*/
extern sq_queue_t g_sigfreeaction;
- 存放信號(hào)隊(duì)列節(jié)點(diǎn)的隊(duì)列捷绒,存放
sigq_t
,此時(shí)Action和信號(hào)已經(jīng)完成了綁定贯要,用于sigq_t
資源的分配暖侨。存放信號(hào)隊(duì)列節(jié)點(diǎn)的隊(duì)有兩種:用于普通分配的隊(duì)列和用于中斷中分配的隊(duì)列。
/* The g_sigpendingaction data structure is a list of available pending
* signal action structures.
*/
extern sq_queue_t g_sigpendingaction;
/* The g_sigpendingirqaction is a list of available pending signal actions
* that are reserved for use by interrupt handlers.
*/
extern sq_queue_t g_sigpendingirqaction;
- 存放未決信號(hào)的隊(duì)列崇渗,存放
sigpendq_t
字逗,用于未決信號(hào)資源的分配。同2相似宅广,它也存在兩種隊(duì)列:用于普通分配的隊(duì)列和用于中斷中分配的隊(duì)列葫掉。
/* The g_sigpendingsignal data structure is a list of available pending
* signal structures.
*/
extern sq_queue_t g_sigpendingsignal;
/* The g_sigpendingirqsignal data structure is a list of available pending
* signal structures that are reserved for use by interrupt handlers.
*/
extern sq_queue_t g_sigpendingirqsignal;
那么這三種數(shù)據(jù)結(jié)構(gòu)以及幾個(gè)全局隊(duì)列又是怎么對(duì)應(yīng)到Task數(shù)據(jù)結(jié)構(gòu)中的呢,先看看Task中與信號(hào)相關(guān)的位域吧跟狱,有兩部分:
第一部分:
struct tcb_s
{
...
#ifndef CONFIG_DISABLE_SIGNALS
sigset_t sigprocmask; /* Signals that are blocked */
sigset_t sigwaitmask; /* Waiting for pending signals */
sq_queue_t sigpendactionq; /* List of pending signal actions */
sq_queue_t sigpostedq; /* List of posted signals */
siginfo_t sigunbinfo; /* Signal info when task unblocked */
#endif
...
}
上述代碼中位域介紹如下:
sigprocmask
:任務(wù)Tcb
的阻塞信號(hào)集俭厚,如果某個(gè)信號(hào)屬于這個(gè)阻塞信號(hào)集,那么發(fā)送該信號(hào)到Tcb
時(shí)兽肤,信號(hào)被阻塞套腹。除非該信號(hào)是等待的信號(hào),或者Tcb
任務(wù)取消了對(duì)該信號(hào)的阻塞资铡,信號(hào)才會(huì)被deliver电禀。sigwaitmask
:該任務(wù)等待的信號(hào)集。sigpendactionq
:用于掛載該任務(wù)需要服務(wù)的信號(hào)節(jié)點(diǎn)sigq_t
笤休,任務(wù)開始執(zhí)行時(shí)尖飞,sigpendactionq
中的節(jié)點(diǎn)所代表的信號(hào)處理函數(shù)將被運(yùn)行。在信號(hào)處理函數(shù)運(yùn)行前店雅,該信號(hào)的sigq_t
節(jié)點(diǎn)將從sigpendactionq
隊(duì)列中轉(zhuǎn)移到sigpostedq
隊(duì)列中政基。sigpostedq
:用于掛載該任務(wù)正在執(zhí)行信號(hào)處理函數(shù)的信號(hào)節(jié)點(diǎn)sigq_t
,當(dāng)信號(hào)處理函數(shù)執(zhí)行完畢后闹啦,信號(hào)節(jié)點(diǎn)sigq_t
將被從隊(duì)列中移除沮明,然后被釋放。sigunbinfo
:用于記錄信號(hào)信息
從上可以看出窍奋,上述結(jié)構(gòu)中的
sigpendactionq
會(huì)存放sigq_t
資源荐健,也就是已經(jīng)完成了信號(hào)和Action綁定后的節(jié)點(diǎn)酱畅。顯然,sigq_t
資源會(huì)在tcb->sigpendactionq
字段指向的隊(duì)列和g_sigpendingaction
/g_sigpendingirqaction
之間流動(dòng)江场。
第二部分纺酸,在
struct task_group_s
中,如果定義了TASK_GROUP的話就會(huì)包含址否。
struct task_group_s
{
...
#ifndef CONFIG_DISABLE_SIGNALS
/* POSIX Signal Control Fields ************************************************/
sq_queue_t tg_sigactionq; /* List of actions for signals */
sq_queue_t tg_sigpendingq; /* List of pending signals */
#endif
...
}
上述兩個(gè)位域含義很清晰餐蔬,一個(gè)用于放置Action,一個(gè)用于放置信號(hào)佑附。對(duì)應(yīng)到前邊的五個(gè)全局隊(duì)列樊诺,可以知道:
sigactq_t
資源在task_group->tg_sigactionq
指向的隊(duì)列和g_sigfreeaction
隊(duì)列中流動(dòng);sigpendq_t
資源在task_group->tg_sigpendingq
指向的隊(duì)列和g_sigpendingsignal
/g_sigpendingirqsignal
隊(duì)列中流動(dòng)帮匾。
到這里為止啄骇,基本上將所有的數(shù)據(jù)結(jié)構(gòu)及資源捋清了。注冊(cè)信號(hào)就是關(guān)聯(lián)一個(gè)Task和某個(gè)信號(hào)處理函數(shù)瘟斜,當(dāng)Task接收到信號(hào)后缸夹,對(duì)應(yīng)信號(hào)的信號(hào)處理函數(shù)被運(yùn)行。而涉及到這個(gè)處理流程的所有資源(上述結(jié)構(gòu)體描述)螺句,就是在這些資源隊(duì)列中進(jìn)行流轉(zhuǎn)虽惭。
來(lái)一張圖吧
信號(hào)機(jī)制
注冊(cè)信號(hào)
通過(guò)
int sigaction(int signo, FAR const struct sigaction *act, FAR struct sigaction *oact)
接口可以查詢和設(shè)置信號(hào)關(guān)聯(lián)的處理方式。在該函數(shù)中蛇尚,完成了以下幾個(gè)功能:
- 將
act
對(duì)應(yīng)的sigaction
設(shè)置進(jìn)本task
中芽唇,并將之前的sigaction
以oact
的形式傳遞出來(lái)。- 根據(jù)
signo
查詢task_group->tg_sigactionq
中是否有對(duì)應(yīng)的sigactq_t
取劫,沒有的話從系統(tǒng)g_sigfreeaction
鏈表中分配一個(gè)匆笤。- 根據(jù)
act
對(duì)應(yīng)的sigaction
中Handler
的處理方式(忽略信號(hào),還是提供處理函數(shù))谱邪,更新sigactq_t
結(jié)構(gòu)炮捧,最終將sigactq_t
的結(jié)構(gòu)插入到task_group->tg_sigactionq
中。
整個(gè)過(guò)程惦银,就是將sigaction注冊(cè)進(jìn)Task中的鏈表中咆课,還是直接看源代碼來(lái)得更清晰,代碼里有詳盡的注釋扯俱,理解起來(lái)比較容易书蚪。
/****************************************************************************
* Name: sigaction
*
* Description:
* This function allows the calling process to examine and/or specify the
* action to be associated with a specific signal.
*
* The structure sigaction, used to describe an action to be taken, is
* defined to include the following members:
*
* - sa_u.sa_handler: Pointer to a signal-catching function
* - sa_u.sa_sigaction: Alternative form of the signal-catching function
* - sa_mask: An additional set of signals to be blocked during execution
* of a signal catching function
* - sa_flags. Special flags to affect the behavior of a signal.
*
* If the argument 'act' is not NULL, it points to a structure specifying
* the action to be associated with the specified signal. If the argument
* 'oact' is not NULL, the action previously associated with the signal
* is stored in the location pointed to by the argument 'oact.'
*
* When a signal is caught by a signal-catching function installed by
* sigaction() function, a new signal mask is calculated and installed for
* the duration of the signal-catching function. This mask is formed by
* taking the union of the current signal mask and the value of the
* sa_mask for the signal being delivered and then including the signal
* being delivered. If and when the user's signal handler returns, the
* original signal mask is restored.
*
* Once an action is installed for a specific signal, it remains installed
* until another action is explicitly requested by another call to sigaction().
*
* Parameters:
* sig - Signal of interest
* act - Location of new handler
* oact - Location to store only handler
*
* Return Value:
* 0 (OK), or -1 (ERROR) if the signal number is invalid.
* (errno is not set)
*
* Assumptions:
*
* POSIX Compatibility:
* - There are no default actions so the special value SIG_DFL is treated
* like SIG_IGN.
* - All sa_flags in struct sigaction of act input are ignored (all
* treated like SA_SIGINFO). The one exception is if CONFIG_SCHED_CHILD_STATUS
* is defined; then SA_NOCLDWAIT is supported but only for SIGCHLD
*
****************************************************************************/
int sigaction(int signo, FAR const struct sigaction *act, FAR struct sigaction *oact)
{
FAR struct tcb_s *rtcb = this_task();
FAR struct task_group_s *group;
FAR sigactq_t *sigact;
/* Since sigactions can only be installed from the running thread of
* execution, no special precautions should be necessary.
*/
DEBUGASSERT(rtcb != NULL && rtcb->group != NULL);
group = rtcb->group;
/* Verify the signal number */
if (!GOOD_SIGNO(signo))
{
set_errno(EINVAL);
return ERROR;
}
/* Find the signal in the signal action queue */
sigact = sig_findaction(group, signo);
/* Return the old sigaction value if so requested */
if (oact)
{
if (sigact)
{
COPY_SIGACTION(oact, &sigact->act);
}
else
{
/* There isn't an old value */
oact->sa_u._sa_handler = NULL;
oact->sa_mask = NULL_SIGNAL_SET;
oact->sa_flags = 0;
}
}
/* If the argument act is a null pointer, signal handling is unchanged;
* thus, the call can be used to enquire about the current handling of
* a given signal.
*/
if (!act)
{
return OK;
}
#if defined(CONFIG_SCHED_HAVE_PARENT) && defined(CONFIG_SCHED_CHILD_STATUS)
/* Handle a special case. Retention of child status can be suppressed
* if signo == SIGCHLD and sa_flags == SA_NOCLDWAIT.
*
* POSIX.1 leaves it unspecified whether a SIGCHLD signal is generated
* when a child process terminates. In NuttX, a SIGCHLD signal is
* generated in this case; but in some other implementations, it may not
* be.
*/
if (signo == SIGCHLD && (act->sa_flags & SA_NOCLDWAIT) != 0)
{
irqstate_t flags;
/* We do require a critical section to muck with the TCB values that
* can be modified by the child thread.
*/
flags = enter_critical_section();
/* Mark that status should be not be retained */
rtcb->group->tg_flags |= GROUP_FLAG_NOCLDWAIT;
/* Free all pending exit status */
group_removechildren(rtcb->group);
leave_critical_section(flags);
}
#endif
/* Handle the case where no sigaction is supplied (SIG_IGN) */
if (act->sa_u._sa_handler == SIG_IGN)
{
/* Do we still have a sigaction container from the previous setting? */
if (sigact)
{
/* Yes.. Remove it from signal action queue */
sq_rem((FAR sq_entry_t *)sigact, &group->tg_sigactionq);
/* And deallocate it */
sig_releaseaction(sigact);
}
}
/* A sigaction has been supplied */
else
{
/* Do we still have a sigaction container from the previous setting?
* If so, then re-use for the new signal action.
*/
if (!sigact)
{
/* No.. Then we need to allocate one for the new action. */
sigact = sig_allocateaction();
/* An error has occurred if we could not allocate the sigaction */
if (!sigact)
{
set_errno(ENOMEM);
return ERROR;
}
/* Put the signal number in the queue entry */
sigact->signo = (uint8_t)signo;
/* Add the new sigaction to signal action queue */
sq_addlast((FAR sq_entry_t *)sigact, &group->tg_sigactionq);
}
/* Set the new sigaction */
COPY_SIGACTION(&sigact->act, act);
}
return OK;
}
發(fā)送信號(hào)
發(fā)送信號(hào)以
kill()
函數(shù)來(lái)解釋是再合適不過(guò)了。
在kill()
函數(shù)中迅栅,根據(jù)傳進(jìn)來(lái)的PID號(hào)殊校,找到對(duì)應(yīng)的Task,并向該Task發(fā)送信號(hào)读存,關(guān)鍵代碼如下:
int kill(pid_t pid, int signo)
{
...
/* Keep things stationary through the following */
sched_lock();
/* Create the siginfo structure */
info.si_signo = signo;
info.si_code = SI_USER;
info.si_errno = EINTR;
info.si_value.sival_ptr = NULL;
#ifdef CONFIG_SCHED_HAVE_PARENT
info.si_pid = rtcb->pid;
info.si_status = OK;
#endif
/* Send the signal */
ret = sig_dispatch(pid, &info);
sched_unlock();
...
}
調(diào)用到
sig_dispatch()
接口箩艺,完成信號(hào)的分發(fā)窜醉,而在sig_dispatch()接口中,又將調(diào)用sig_tcbdispatch()
接口艺谆,最核心的部分在于sig_tcbdispatch()
,事實(shí)上上層信號(hào)最終的分發(fā)都在這個(gè)接口中實(shí)現(xiàn)拜英。
sig_tcbdispatch()
函數(shù)静汤,主要完成以下幾點(diǎn)功能:
- 如果分發(fā)的信號(hào)在目標(biāo)
Task
中是是masked
,而且Task
的狀態(tài)沒有變成等待該信號(hào)的話居凶,就將信號(hào)添加進(jìn)pending
隊(duì)列中虫给,也就是task_group->tg_sigpendingq
隊(duì)列中;而如果Task
的狀態(tài)變成了需要等待這個(gè)之前mask
掉的信號(hào)侠碧,這時(shí)候就調(diào)用up_unblock_task()
接口抹估,完成任務(wù)的切換。- 如果分發(fā)的信號(hào)在目標(biāo)
Task
中是unmask
弄兜,此時(shí)需要調(diào)用sig_queueaction()
接口药蜻,將一個(gè)sigq_t
結(jié)構(gòu)添加進(jìn)tcb->sigpendactionq
隊(duì)列中。當(dāng)然替饿,在sig_queueaction()
接口中语泽,會(huì)去從上文中提到過(guò)的全局隊(duì)列中獲取sigq_t
結(jié)構(gòu)資源。加入到tcb->sigpendactionq
隊(duì)列后视卢,調(diào)用up_schedule_sigaction()
接口踱卵,該接口主要是更新Task
對(duì)應(yīng)的Tcb
中的內(nèi)容,最終調(diào)用up_unblock_task()
進(jìn)行任務(wù)切換的時(shí)候据过,能去處理信號(hào)惋砂。
最終信號(hào)發(fā)送成功,有兩件事完成了:1)在目標(biāo)
Task
的tcb->sigpendactionq
隊(duì)列中绳锅,成功的添加了sigq_t
結(jié)構(gòu)西饵,該結(jié)構(gòu)完成了信號(hào)和Action
的匹配;2)更新了目標(biāo)Task
的tcb->xcp
中的內(nèi)容榨呆,更新完這個(gè)后罗标,當(dāng)完成任務(wù)切換的時(shí)候,Context Restore
的時(shí)候會(huì)將tcb->xcp
中的內(nèi)容恢復(fù)到寄存器中积蜻,因此也就能跳轉(zhuǎn)到信號(hào)處理函數(shù)中執(zhí)行闯割。
關(guān)鍵代碼如下:
/****************************************************************************
* Name: sig_tcbdispatch
*
* Description:
* All signals received the task (whatever the source) go through this
* function to be processed. This function is responsible for:
*
* - Determining if the signal is blocked.
* - Queuing and dispatching signal actions
* - Unblocking tasks that are waiting for signals
* - Queuing pending signals.
*
* This function will deliver the signal to the task associated with
* the specified TCB. This function should *not* typically be used
* to dispatch signals since it will *not* follow the group signal
* deliver algorithms.
*
* Returned Value:
* Returns 0 (OK) on success or a negated errno value on failure.
*
****************************************************************************/
int sig_tcbdispatch(FAR struct tcb_s *stcb, siginfo_t *info)
{
...
/************************* MASKED SIGNAL HANDLING ************************/
/* Check if the signal is masked -- if it is, it will be added to the list
* of pending signals.
*/
if (sigismember(&stcb->sigprocmask, info->si_signo))
{
/* Check if the task is waiting for this pending signal. If so, then unblock it.
* This must be performed in a critical section because signals can be queued
* from the interrupt level.
*/
flags = enter_critical_section();
if (stcb->task_state == TSTATE_WAIT_SIG &&
sigismember(&stcb->sigwaitmask, info->si_signo))
{
memcpy(&stcb->sigunbinfo, info, sizeof(siginfo_t));
stcb->sigwaitmask = NULL_SIGNAL_SET;
up_unblock_task(stcb);
leave_critical_section(flags);
}
/* Its not one we are waiting for... Add it to the list of pending
* signals.
*/
else
{
leave_critical_section(flags);
ASSERT(sig_addpendingsignal(stcb, info));
}
}
/************************ UNMASKED SIGNAL HANDLING ***********************/
else
{
#ifdef CONFIG_SMP
int cpu;
#endif
/* Queue any sigaction's requested by this task. */
ret = sig_queueaction(stcb, info);
/* Deliver of the signal must be performed in a critical section */
flags = enter_critical_section();
#ifdef CONFIG_SMP
/* If the thread is running on another CPU, then pause that CPU. We can
* then setup the for signal delivery on the running thread. When the
* CPU is resumed, the signal handler will then execute.
*/
cpu = sched_cpu_pause(stcb);
#endif /* CONFIG_SMP */
/* Then schedule execution of the signal handling action on the
* recipient's thread.
*/
up_schedule_sigaction(stcb, sig_deliver);
#ifdef CONFIG_SMP
/* Resume the paused CPU (if any) */
if (cpu >= 0)
{
/* I am not yet sure how to handle a failure here. */
DEBUGVERIFY(up_cpu_resume(cpu));
}
#endif /* CONFIG_SMP */
/* Check if the task is waiting for an unmasked signal. If so, then
* unblock it. This must be performed in a critical section because
* signals can be queued from the interrupt level.
*/
if (stcb->task_state == TSTATE_WAIT_SIG)
{
memcpy(&stcb->sigunbinfo, info, sizeof(siginfo_t));
stcb->sigwaitmask = NULL_SIGNAL_SET;
up_unblock_task(stcb);
}
leave_critical_section(flags);
/* If the task neither was waiting for the signal nor had a signal
* handler attached to the signal, then the default action is
* simply to ignore the signal
*/
/*********************** OTHER SIGNAL HANDLING ***********************/
/* If the task is blocked waiting for a semaphore, then that task must
* be unblocked when a signal is received.
*/
...
}
傳遞信號(hào)
信號(hào)最終的deliver,需要理解兩個(gè)函數(shù)竿拆,以及一個(gè)過(guò)程宙拉。兩個(gè)函數(shù)指的是
up_schedule_sigaction()
和up_sigdeliver()
,在arch/arm/src/arm
下實(shí)現(xiàn)丙笋,一個(gè)過(guò)程指的是Context切換的過(guò)程谢澈,參考我之前的一篇文章:Nuttx Task Schedule
先來(lái)看看
up_schedule_sigaction()
函數(shù)煌贴,在函數(shù)中又分為幾種情況:1)發(fā)送的信號(hào)是給當(dāng)前任務(wù)的,且當(dāng)前任務(wù)不在中斷上下文中锥忿;2)發(fā)送的信號(hào)是給當(dāng)前任務(wù)的牛郑,且當(dāng)前任務(wù)在中斷上下文中;3)發(fā)送的信號(hào)是給其他任務(wù)的敬鬓。
- 發(fā)送給當(dāng)前任務(wù)淹朋,且不在中斷中,直接調(diào)用
sig_deliver()
函數(shù)钉答,完成信號(hào)的deliver础芍。- 發(fā)送給當(dāng)前任務(wù),且在中斷中数尿,需要先將中斷上下文中保存的
PC
和CPSR
值保存到tcb->xcp.saved_pc
和tcb->xcp.saved_cpsr
中仑性,然后再將up_sigdeliver()
函數(shù)指針值及新設(shè)置的CPSR
覆蓋中斷上下文中的PC
和CPSR
值,因此當(dāng)中斷返回的時(shí)候右蹦,中斷上下文將恢復(fù)到寄存器中诊杆,此時(shí)便會(huì)去執(zhí)行up_sigdeliver()
函數(shù),在up_sigdeliver()
中調(diào)用sig_deliver()
完成信號(hào)處理嫩实。這時(shí)候可能會(huì)有疑問(wèn)刽辙,那之前的中斷上下文被破壞了,怎么恢復(fù)呢甲献?別忘了tcb->xcp.saved_pc
和tcb->xcp.saved_cpsr
宰缤,這個(gè)結(jié)構(gòu)保存了最開始的中斷上下文,因此在up_sigdeliver()
執(zhí)行中晃洒,會(huì)去恢復(fù)原來(lái)的中斷上下文慨灭。- 發(fā)送給其他任務(wù),處理的方式與在中斷中發(fā)送給當(dāng)前任務(wù)的情況類似球及。
/****************************************************************************
* Name: up_schedule_sigaction
*
* Description:
* This function is called by the OS when one or more
* signal handling actions have been queued for execution.
* The architecture specific code must configure things so
* that the 'igdeliver' callback is executed on the thread
* specified by 'tcb' as soon as possible.
*
* This function may be called from interrupt handling logic.
*
* This operation should not cause the task to be unblocked
* nor should it cause any immediate execution of sigdeliver.
* Typically, a few cases need to be considered:
*
* (1) This function may be called from an interrupt handler
* During interrupt processing, all xcptcontext structures
* should be valid for all tasks. That structure should
* be modified to invoke sigdeliver() either on return
* from (this) interrupt or on some subsequent context
* switch to the recipient task.
* (2) If not in an interrupt handler and the tcb is NOT
* the currently executing task, then again just modify
* the saved xcptcontext structure for the recipient
* task so it will invoke sigdeliver when that task is
* later resumed.
* (3) If not in an interrupt handler and the tcb IS the
* currently executing task -- just call the signal
* handler now.
*
****************************************************************************/
void up_schedule_sigaction(struct tcb_s *tcb, sig_deliver_t sigdeliver)
{
irqstate_t flags;
sinfo("tcb=0x%p sigdeliver=0x%p\n", tcb, sigdeliver);
/* Make sure that interrupts are disabled */
flags = enter_critical_section();
/* Refuse to handle nested signal actions */
if (!tcb->xcp.sigdeliver)
{
/* First, handle some special cases when the signal is
* being delivered to the currently executing task.
*/
sinfo("rtcb=0x%p CURRENT_REGS=0x%p\n", this_task(), CURRENT_REGS);
if (tcb == this_task())
{
/* CASE 1: We are not in an interrupt handler and
* a task is signalling itself for some reason.
*/
if (!CURRENT_REGS)
{
/* In this case just deliver the signal now. */
sigdeliver(tcb);
}
/* CASE 2: We are in an interrupt handler AND the
* interrupted task is the same as the one that
* must receive the signal, then we will have to modify
* the return state as well as the state in the TCB.
*
* Hmmm... there looks like a latent bug here: The following
* logic would fail in the strange case where we are in an
* interrupt handler, the thread is signalling itself, but
* a context switch to another task has occurred so that
* CURRENT_REGS does not refer to the thread of this_task()!
*/
else
{
/* Save the return lr and cpsr and one scratch register
* These will be restored by the signal trampoline after
* the signals have been delivered.
*/
tcb->xcp.sigdeliver = sigdeliver;
tcb->xcp.saved_pc = CURRENT_REGS[REG_PC];
tcb->xcp.saved_cpsr = CURRENT_REGS[REG_CPSR];
/* Then set up to vector to the trampoline with interrupts
* disabled
*/
CURRENT_REGS[REG_PC] = (uint32_t)up_sigdeliver;
CURRENT_REGS[REG_CPSR] = SVC_MODE | PSR_I_BIT | PSR_F_BIT;
/* And make sure that the saved context in the TCB
* is the same as the interrupt return context.
*/
up_savestate(tcb->xcp.regs);
}
}
/* Otherwise, we are (1) signaling a task is not running
* from an interrupt handler or (2) we are not in an
* interrupt handler and the running task is signalling
* some non-running task.
*/
else
{
/* Save the return lr and cpsr and one scratch register
* These will be restored by the signal trampoline after
* the signals have been delivered.
*/
tcb->xcp.sigdeliver = sigdeliver;
tcb->xcp.saved_pc = tcb->xcp.regs[REG_PC];
tcb->xcp.saved_cpsr = tcb->xcp.regs[REG_CPSR];
/* Then set up to vector to the trampoline with interrupts
* disabled
*/
tcb->xcp.regs[REG_PC] = (uint32_t)up_sigdeliver;
tcb->xcp.regs[REG_CPSR] = SVC_MODE | PSR_I_BIT | PSR_F_BIT;
}
}
leave_critical_section(flags);
}
當(dāng)調(diào)用
up_schedule_sigaction()
接口氧骤,更新了tcb->xcp
的值后,當(dāng)遇到任務(wù)切換點(diǎn)的時(shí)候吃引,比如up_unblock_task()
筹陵,就有可能去執(zhí)行信號(hào)處理函數(shù)了,這個(gè)就是up_sigdeliver()
函數(shù)的作用了镊尺。
up_sigdeliver()
函數(shù)主要完成以下幾個(gè)功能:
- 在棧上邊regs中將現(xiàn)場(chǎng)保存好朦佩,并且將之前tcb->xcp.saved_pc和tcb->xcp.saved_cpsr中的值恢復(fù)到regs棧上邊對(duì)應(yīng)位置。
- 恢復(fù)中斷狀態(tài)
- 調(diào)用信號(hào)處理Handler進(jìn)行處理
- 調(diào)用up_fullcontextrestore(regs)庐氮,進(jìn)行任務(wù)的恢復(fù)语稠。
可以看出,這個(gè)過(guò)程很像中斷處理的過(guò)程,因此信號(hào)的處理機(jī)制仙畦,有的地方稱為軟中斷處理機(jī)制
還是放上代碼吧:
/****************************************************************************
* Name: up_sigdeliver
*
* Description:
* This is the a signal handling trampoline. When a signal action was
* posted. The task context was mucked with and forced to branch to this
* location with interrupts disabled.
*
****************************************************************************/
void up_sigdeliver(void)
{
struct tcb_s *rtcb = this_task();
uint32_t regs[XCPTCONTEXT_REGS];
sig_deliver_t sigdeliver;
/* Save the errno. This must be preserved throughout the signal handling
* so that the user code final gets the correct errno value (probably
* EINTR).
*/
int saved_errno = rtcb->pterrno;
board_autoled_on(LED_SIGNAL);
sinfo("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
ASSERT(rtcb->xcp.sigdeliver != NULL);
/* Save the real return state on the stack. */
up_copyfullstate(regs, rtcb->xcp.regs);
regs[REG_PC] = rtcb->xcp.saved_pc;
regs[REG_CPSR] = rtcb->xcp.saved_cpsr;
/* Get a local copy of the sigdeliver function pointer. we do this so that
* we can nullify the sigdeliver function pointer in the TCB and accept
* more signal deliveries while processing the current pending signals.
*/
sigdeliver = rtcb->xcp.sigdeliver;
rtcb->xcp.sigdeliver = NULL;
/* Then restore the task interrupt state */
up_irq_restore(regs[REG_CPSR]);
/* Deliver the signals */
sigdeliver(rtcb);
/* Output any debug messages BEFORE restoring errno (because they may
* alter errno), then disable interrupts again and restore the original
* errno that is needed by the user logic (it is probably EINTR).
*/
sinfo("Resuming\n");
(void)up_irq_save();
rtcb->pterrno = saved_errno;
/* Then restore the correct state for this thread of execution. */
board_autoled_off(LED_SIGNAL);
up_fullcontextrestore(regs);
}
上面討論的兩個(gè)函數(shù)输涕,都會(huì)最終調(diào)用到
sig_deliver()
函數(shù),完成最終實(shí)際上的Handler處理慨畸,sig_deliver()
函數(shù)處理那些被鏈接到tcb->sigpendactionq
中的sigq_t
莱坎,將sigq_t
結(jié)構(gòu)轉(zhuǎn)移到tcb->sigpostedq
隊(duì)列中,緊接著執(zhí)行信號(hào)處理函數(shù)寸士。處理完當(dāng)前的信號(hào)后型奥,緊接著調(diào)用sig_unmaskpendingsignal()
函數(shù),查詢tcb_group->tg_sigpendingq
中是否還有pending
的信號(hào)需要去處理碉京,并調(diào)用sig_tcbdispatch()
繼續(xù)進(jìn)行分發(fā)。最終處理完本次任務(wù)后螟深,將sigq_t
結(jié)構(gòu)體從任務(wù)tcb->sigpostedq
中移除谐宙,并釋放該結(jié)構(gòu)。
代碼如下:
/****************************************************************************
* Name: sig_deliver
*
* Description:
* This function is called on the thread of execution of the signal
* receiving task. It processes all queued signals then returns.
*
****************************************************************************/
void sig_deliver(FAR struct tcb_s *stcb)
{
FAR sigq_t *sigq;
FAR sigq_t *next;
sigset_t savesigprocmask;
irqstate_t flags;
int saved_errno;
sched_lock();
/* Save the thread errno. When we finished dispatching the
* signal actions and resume the task, the errno value must
* be unchanged by the operation of the signal handling. In
* particular, the EINTR indication that says that the task
* was reawakened by a signal must be retained.
*/
saved_errno = stcb->pterrno;
for (sigq = (FAR sigq_t *)stcb->sigpendactionq.head; (sigq); sigq = next)
{
next = sigq->flink;
sinfo("Sending signal sigq=0x%x\n", sigq);
/* Remove the signal structure from the sigpendactionq and place it
* in the sigpostedq. NOTE: Since signals are processed one at a
* time, there should never be more than one signal in the sigpostedq
*/
flags = enter_critical_section();
sq_rem((FAR sq_entry_t *)sigq, &(stcb->sigpendactionq));
sq_addlast((FAR sq_entry_t *)sigq, &(stcb->sigpostedq));
leave_critical_section(flags);
/* Call the signal handler (unless the signal was cancelled)
*
* Save a copy of the old sigprocmask and install the new
* (temporary) sigprocmask. The new sigprocmask is the union
* of the current sigprocmask and the sa_mask for the signal being
* delivered plus the signal being delivered.
*/
savesigprocmask = stcb->sigprocmask;
stcb->sigprocmask = savesigprocmask | sigq->mask | SIGNO2SET(sigq->info.si_signo);
/* Deliver the signal. In the kernel build this has to be handled
* differently if we are dispatching to a signal handler in a user-
* space task or thread; we have to switch to user-mode before
* calling the task.
*/
#if defined(CONFIG_BUILD_PROTECTED) || defined(CONFIG_BUILD_KERNEL)
if ((stcb->flags & TCB_FLAG_TTYPE_MASK) != TCB_FLAG_TTYPE_KERNEL)
{
/* The sigq_t pointed to by sigq resides in kernel space. So we
* cannot pass a reference to sigq->info to the user application.
* Instead, we will copy the siginfo_t structure onto the stack.
* We are currently executing on the stack of the user thread
* (albeit temporarily in kernel mode), so the copy of the
* siginfo_t structure will be accessible by the user thread.
*/
siginfo_t info;
memcpy(&info, &sigq->info, sizeof(siginfo_t));
up_signal_dispatch(sigq->action.sighandler, sigq->info.si_signo,
&info, NULL);
}
else
#endif
{
/* The kernel thread signal handler is much simpler. */
(*sigq->action.sighandler)(sigq->info.si_signo, &sigq->info,
NULL);
}
/* Restore the original sigprocmask */
stcb->sigprocmask = savesigprocmask;
/* Now, handle the (rare?) case where (a) a blocked signal was
* received while the signal handling executed but (b) restoring the
* original sigprocmask will unblock the signal.
*/
sig_unmaskpendingsignal();
/* Remove the signal from the sigpostedq */
flags = enter_critical_section();
sq_rem((FAR sq_entry_t *)sigq, &(stcb->sigpostedq));
leave_critical_section(flags);
/* Then deallocate it */
sig_releasependingsigaction(sigq);
}
stcb->pterrno = saved_errno;
sched_unlock();
}
Nuttx OS的學(xué)習(xí)和相關(guān)文檔更新持續(xù)中...