Data sources in Mapzen Search

Mapzen Search is powered by several major open data sets and owes a tremendous debt of gratitude to the individuals and communities which produced them.

OpenStreetMap

OpenStreetMap is a community-driven, editable map of the world. It prioritizes local knowledge and individual contributions over bulk imports, which often means it has excellent coverage even in remote areas where no large-scale mapping efforts have been attempted. OpenStreetMap contains information on landmarks, buildings, roads, and natural features.
With its coverage of roads as well as rich metadata, OpenStreetMap is arguably the most valuable dataset used by Mapzen Search for general usage.
All OpenStreetMap data is licensed under the ODbL, a share-alike license which also requires attribution.

Quattroshapes

Quattroshapes provides global coverage of location data for:
countries
regions (states/provinces)
counties
localities (cities, towns, hamlets, villages)
neighborhoods (in many places)

Originally assembled by Foursquare, Quattroshapes provides not only the organizational hierarchy for nearly any point or address worldwide (town > local government > province > country), but also the borders for each of these places.
Mapzen Search uses data from Quattroshapes to apply a consistent hierarchy to our data from other sources, so you can be sure that points of interest have consistent data about the cities, regions, and countries in which they are located.
Quattroshapes data is licensed CC BY, allowing its use for any purpose with proper attribution.

OpenAddresses
OpenAddresses is a collection of authoritatively sourced data for addresses around the world, with currently over 200 million addresses. OpenAddresses data comes exclusively from regional authorities such as federal, state, or local governments. Because it consists of entirely bulk imports, OpenAddresses is a large, global, and rapidly growing dataset. Many countries, particularly in Europe, now have every address represented in OpenAddresses.
OpenAddresses is by far the largest dataset by number of records used by Mapzen Search, so even though it only contains address data (i.e. no building names or other metadata), it’s a great resource for global geocoding.
As OpenAddresses is sourced from regional governments, its data is in the public domain.

Geonames

Geonames is an aggregation of numerous authoritative and non-authoritative datasets. It contains information on everything from country borders to airport names to geographical features. While Geonames does not contain any shape data (such as country borders), it does have a powerful and well defined hierarchy to describe the relationships between different records. Currently, this custom hierarchy makes it harder to use in combination with data from other sources, but the Mapzen Who’s On First project will help by providing concordance between Geonames and other datasets.
In the meantime, Geonames still provides a wide variety of useful data that helps augment the other datasets used by Mapzen Search.
Geonames data is licensed CC BY.

From https://mapzen.com/documentation/search/data-sources/

最后編輯于
?著作權歸作者所有,轉載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子妥箕,更是在濱河造成了極大的恐慌铺敌,老刑警劉巖,帶你破解...
    沈念sama閱讀 216,372評論 6 498
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件蔬螟,死亡現(xiàn)場離奇詭異,居然都是意外死亡,警方通過查閱死者的電腦和手機终议,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,368評論 3 392
  • 文/潘曉璐 我一進店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來葱蝗,“玉大人穴张,你說我怎么就攤上這事×铰” “怎么了皂甘?”我有些...
    開封第一講書人閱讀 162,415評論 0 353
  • 文/不壞的土叔 我叫張陵,是天一觀的道長悼凑。 經(jīng)常有香客問我偿枕,道長,這世上最難降的妖魔是什么户辫? 我笑而不...
    開封第一講書人閱讀 58,157評論 1 292
  • 正文 為了忘掉前任,我火速辦了婚禮渔欢,結果婚禮上,老公的妹妹穿的比我還像新娘。我一直安慰自己访诱,他們只是感情好,可當我...
    茶點故事閱讀 67,171評論 6 388
  • 文/花漫 我一把揭開白布韩肝。 她就那樣靜靜地躺著盐数,像睡著了一般。 火紅的嫁衣襯著肌膚如雪玫氢。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,125評論 1 297
  • 那天漾峡,我揣著相機與錄音,去河邊找鬼喻旷。 笑死生逸,一個胖子當著我的面吹牛,可吹牛的內(nèi)容都是我干的且预。 我是一名探鬼主播槽袄,決...
    沈念sama閱讀 40,028評論 3 417
  • 文/蒼蘭香墨 我猛地睜開眼锋谐,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了涮拗?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 38,887評論 0 274
  • 序言:老撾萬榮一對情侶失蹤鼓择,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體抑堡,經(jīng)...
    沈念sama閱讀 45,310評論 1 310
  • 正文 獨居荒郊野嶺守林人離奇死亡夷野,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點故事閱讀 37,533評論 2 332
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了悯搔。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 39,690評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡通危,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出菊碟,到底是詐尸還是另有隱情,我是刑警寧澤逆害,帶...
    沈念sama閱讀 35,411評論 5 343
  • 正文 年R本政府宣布蚣驼,位于F島的核電站,受9級特大地震影響颖杏,放射性物質發(fā)生泄漏纯陨。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 41,004評論 3 325
  • 文/蒙蒙 一翼抠、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧阴颖,春花似錦、人聲如沸膘盖。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,659評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽损晤。三九已至,卻和暖如春尤勋,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背最冰。 一陣腳步聲響...
    開封第一講書人閱讀 32,812評論 1 268
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留赌朋,地道東北人。 一個月前我還...
    沈念sama閱讀 47,693評論 2 368
  • 正文 我出身青樓沛慢,卻偏偏與公主長得像,于是被迫代替她去往敵國和親团甲。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 44,577評論 2 353

推薦閱讀更多精彩內(nèi)容