Papers of Multi Agent Reinforcement Learning(MARL)

Papers in Multi-Agent Reinforcement Learning(MARL)

This is my paper lists about Multi-Agent Reinforcement Learning.

What makes this list outstanding?

  • There is introduction part(or called comment) based my understanding of the papers(if there is some objective mistakes, thanks a lot if you can tell me!).

  • There is score part to help you quickly find papers that may enlight and accelerate your learning.

  • PS:

    • "Score" is range from 1 to 5.The higer score is, the more useful the paper is(i.e. 5 means the higest quanlity and useful to study).
    • Note that the point is based on only my personal view.

Book and Reviews

Title Introduction Score
Reinforcement Learning: state of the art A comprehensive review including POMDP and Bayesian RL 5
POMDP solution methods A concise and detailed introduction to POMDP 4
A Concise Introduction to Decentralized POMPDs A newbie-friendly and comprehensive book to dec-POMPDs 4
A Comprehensive Survey of Multi-agent Reinforcement Learning An top scope to MARL, inconlusive and comprehensive! 5
Markov Decision Process in Artificial Intelligence and CS294-Sequential Decisions: Planning and Reinforcement Learning Detailed MDP and beyond MDP 4
Multi-agent Systems:Algorithmic, Game-Theoretic, and Logic Foundations From the view of game theory, not deep reinforcement learning 3

Deep Dec-POMDPs

Title Introduction Score
Multiagent Cooperation and Competition with Deep Reinforcement Learning The first paper looks at MADRL after dqn? 3
Deep Recurrent Q-Learning for Partially Observable MDPs Dqn has problem: observation != state 4
Cooperative Multi-Agent Control Using Deep Reinforcement Learning 3 schemes extend DQN、DDPG躺苦、TRPO from sing-agent to multi-agent;code avaiable 4
Value-Decomposition Networks for Cooperative Multi-Agent Learning The first paper apply decomposition in MADRL 4
QMIX: Monotonic Value Function Fatorisation for Deep Multi-agent Reinforcement Learning Based VDN, more flexible to decomposition global Q 4

Opponent Modeling

Title Introduction Score
Modeling Others using Oneself in Multi-agent Reinforcement Learning Using opponent goal as addtional input 3
Learning Policy Representations in Multi-agent Systems Using policy representation to cluser, classify and RL(using opponent's embedding as addtional input) 4

Communication

Title Introduction Score
Emergence of Grounded Compositional Language in Multi-Agent Populations
Learning to Communicate with Deep Multi-Agent Reinforcement Learning Communicate discrete action 4
Learning Multiagent Communication with Backpropagation Communicate hidden state 3
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末张症,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子施禾,更是在濱河造成了極大的恐慌,老刑警劉巖搁胆,帶你破解...
    沈念sama閱讀 211,123評(píng)論 6 490
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件弥搞,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡渠旁,警方通過(guò)查閱死者的電腦和手機(jī)攀例,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,031評(píng)論 2 384
  • 文/潘曉璐 我一進(jìn)店門(mén),熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)顾腊,“玉大人粤铭,你說(shuō)我怎么就攤上這事≡影校” “怎么了梆惯?”我有些...
    開(kāi)封第一講書(shū)人閱讀 156,723評(píng)論 0 345
  • 文/不壞的土叔 我叫張陵酱鸭,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我加袋,道長(zhǎng)凛辣,這世上最難降的妖魔是什么? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 56,357評(píng)論 1 283
  • 正文 為了忘掉前任职烧,我火速辦了婚禮扁誓,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘蚀之。我一直安慰自己蝗敢,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,412評(píng)論 5 384
  • 文/花漫 我一把揭開(kāi)白布足删。 她就那樣靜靜地躺著寿谴,像睡著了一般。 火紅的嫁衣襯著肌膚如雪失受。 梳的紋絲不亂的頭發(fā)上讶泰,一...
    開(kāi)封第一講書(shū)人閱讀 49,760評(píng)論 1 289
  • 那天,我揣著相機(jī)與錄音拂到,去河邊找鬼痪署。 笑死,一個(gè)胖子當(dāng)著我的面吹牛兄旬,可吹牛的內(nèi)容都是我干的狼犯。 我是一名探鬼主播,決...
    沈念sama閱讀 38,904評(píng)論 3 405
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼领铐,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼悯森!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起绪撵,我...
    開(kāi)封第一講書(shū)人閱讀 37,672評(píng)論 0 266
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤瓢姻,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后音诈,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體汹来,經(jīng)...
    沈念sama閱讀 44,118評(píng)論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,456評(píng)論 2 325
  • 正文 我和宋清朗相戀三年改艇,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片坟岔。...
    茶點(diǎn)故事閱讀 38,599評(píng)論 1 340
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡谒兄,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出社付,到底是詐尸還是另有隱情承疲,我是刑警寧澤邻耕,帶...
    沈念sama閱讀 34,264評(píng)論 4 328
  • 正文 年R本政府宣布,位于F島的核電站燕鸽,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏啊研。R本人自食惡果不足惜御滩,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,857評(píng)論 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望削解。 院中可真熱鬧,春花似錦沟娱、人聲如沸矫废。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 30,731評(píng)論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)赵誓。三九已至,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間碰声,已是汗流浹背诡蜓。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 31,956評(píng)論 1 264
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留胰挑,地道東北人蔓罚。 一個(gè)月前我還...
    沈念sama閱讀 46,286評(píng)論 2 360
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像瞻颂,于是被迫代替她去往敵國(guó)和親豺谈。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,465評(píng)論 2 348

推薦閱讀更多精彩內(nèi)容

  • 多數(shù)人的智慧更勝一籌 一九零六年贡这,達(dá)爾文的表弟高爾頓在普利茅斯的牲畜市場(chǎng)上和八百人進(jìn)行了一場(chǎng)猜謎比賽茬末。比賽看誰(shuí)能猜...
    素日錦年1閱讀 420評(píng)論 0 0
  • 夜已深,終于可以休息了,雖說(shuō)是加班丽惭,比平常上班還要辛苦击奶,工作到這么晚,本來(lái)是想說(shuō)些什么的责掏,可是太困了柜砾,還是先睡吧,...
    雪慢慢閱讀 133評(píng)論 0 0
  • 坐在安靜的小酒吧换衬,靜靜的聽(tīng)著Duffy<Don't forsake me>心情似乎在這一刻不在那么喧囂痰驱,油然而生一...
    VL閱讀 281評(píng)論 0 0