前面介紹過《基于Python的指數(shù)基金量化投資-通過市盈率和市凈率對(duì)指數(shù)估值》饰抒,通過估值來進(jìn)行指數(shù)基金的投資箫措。
當(dāng)估值百分位為90%-100%的時(shí)候佩迟,指數(shù)處于嚴(yán)重高估狀態(tài),可以考慮全倉賣出遏乔;
當(dāng)估值百分位為80%-90%的時(shí)候点寥,指數(shù)處于高估狀態(tài)赊级,可以考慮大份額賣出;
當(dāng)估值百分位為60%-80%的時(shí)候俐银,指數(shù)處于正常偏高狀態(tài)尿背,可以考慮小份額賣出;
當(dāng)估值百分位為40%-60%的時(shí)候捶惜,指數(shù)處于正常狀態(tài)田藐,可以考慮持有;
當(dāng)估值百分位為20%-40%的時(shí)候吱七,指數(shù)處于正常偏低狀態(tài)汽久,可以考慮小份額定投;
當(dāng)估值百分位為10%-20%的時(shí)候踊餐,指數(shù)處于低估狀態(tài)景醇,可以考慮大份額定投;
當(dāng)估值百分位為0%-10%的時(shí)候市袖,指數(shù)處于嚴(yán)重低估狀態(tài)啡直,可以考慮大份額定投+增量買入烁涌;
有了這個(gè)策略,就需要觀察每個(gè)指數(shù)的估值百分位情況酒觅,如果一個(gè)一個(gè)查看會(huì)很麻煩撮执,最簡單的辦法就是把各個(gè)指數(shù)直觀的通過圖形的方式表現(xiàn)出來,如下圖所示:
圖中按照嚴(yán)重低估舷丹、低估抒钱、正常偏低、正常颜凯、正常偏高谋币、高估和嚴(yán)重高估劃分了對(duì)應(yīng)的區(qū)域,并用不同的顏色進(jìn)行了區(qū)分症概,然后分別計(jì)算每一個(gè)指數(shù)的估值百分位蕾额,然后把計(jì)算出來的結(jié)果畫在相應(yīng)的區(qū)域,這樣就可以非常直觀的看到所有指數(shù)的一個(gè)估值情況彼城。
源碼
# 源碼中用到的估值數(shù)據(jù)文件g_*.csv可以聯(lián)系小將獲取诅蝶。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
index_name_csv = ['g_hs300.csv',? #滬深300 - 0
??????????????? 'g_zz500.csv',? #中證500 - 1
??????????????? 'g_zz100.csv',? #中證100 - 2
??????????????? 'g_shz50.csv',? #上證50? - 3
??????????????? 'g_hsyy300.csv',? #滬深醫(yī)藥300 - 4
??????????????? 'g_zzyh.csv',?? #中證銀行? -5
??????????????? 'g_zzxf.csv',?? #中證消費(fèi)? -6
??????????????? 'g_zzbj.csv',?? #中證白酒? -7
??????????????? 'g_db500.csv',? # 500低波動(dòng)-8
??????????????? 'g_jz300.csv',? # 300價(jià)值?? -9
??????????????? 'g_yy100.csv',? #醫(yī)藥100?? -10
??????????????? 'g_zzyyao.csv',?? #中證醫(yī)藥? -11
??????????????? 'g_jbm50.csv',? #基本面50? -12
??????????????? 'g_shzhl.csv',? #上證紅利? -13
??????????????? 'g_zzhl.csv',?? #中證紅利? -14
??????????????? 'g_zzjg.csv',?? #中證軍工? -15
??????????????? 'g_spyl.csv',?? #食品飲料? -16
??????????????? 'g_zqgs.csv',?? #證券公司? -17
??????????????? 'g_ylcy.csv',?? #養(yǎng)老產(chǎn)業(yè)? -18
??????????????? 'g_szhl.csv',?? #深證紅利? -19
??????????????? 'g_zzhb.csv',?? #中證環(huán)保? -20
??????????????? 'g_cyb.csv',??? #創(chuàng)業(yè)板??? -21
??????????????? 'g_hszs.csv',?? #恒生指數(shù)? -22
??????????????? 'g_hsgqzs.csv',?? #恒生國企指數(shù)? -23
??????????????? 'g_zghl50.csv',? #中國互聯(lián)50? -24
??????????????? 'g_xgdp.csv',? #香港大盤? -25
??????????????? 'g_xgzx.csv']? #香港中小? -26
index_info = np.zeros([len(index_name_csv),1])
for i in range(len(index_name_csv)):
???index_data = pd.read_csv('./importfile/indexSeries/indexValuation/g/' +index_name_csv[i])
???if index_name_csv[i] == 'g_zzyh.csv' or index_name_csv[i] =='g_zqgs.csv':
???????data_calc = index_data['pb']
???else:
???????data_calc = index_data['pe']
???xx = np.where(data_calc < data_calc.values[-1])
???data_percentage = len(xx[0]) / data_calc.shape[0]
???if index_name_csv[i] == 'g_zzyh.csv':
???????data_calc = index_data['pe']
???????xx = np.where(data_calc < data_calc.values[-1])
???????data_percentage_add = len(xx[0]) / data_calc.shape[0]
???????index_info[i] = 0.8*data_percentage + 0.2*data_percentage_add
???else:
???????index_info[i] = data_percentage
plt.figure(3)
plt.rcParams['font.sans-serif'] =['Microsoft YaHei']
plt.plot(index_info, '--ow', ms=12,linewidth=2)
plt.axhspan(0, 0.1, facecolor='#4D8070')
plt.axhspan(0.1, 0.2, facecolor='#21DB85')
plt.axhspan(0.2, 0.4, facecolor='#B0D91C')
plt.axhspan(0.4, 0.6, facecolor='#E3BD00')
plt.axhspan(0.6, 0.8, facecolor='#FF9421')
plt.axhspan(0.8, 0.9, facecolor='#F56600')
plt.axhspan(0.9, 1.4, facecolor='#B22222')
plt.xlim(-1,len(index_info))
plt.ylim(-0.15, 1.4)
scale_y = 0.07
offset_x = 0.25
offset_y = 0.062
offset_x_num = 0.1
offset_x_alpha = 0.15
font_size = 22
index_name = ['滬深300',
????????????? '中證500',
????????????? '中證100',
????????????? '上證50',
????????????? '滬深醫(yī)藥300',
????????????? '中證銀行',
????????????? '中證消費(fèi)',
????????????? '中證白酒',
????????????? '500低波動(dòng)',
????????????? '300價(jià)值',
????????????? '醫(yī)藥100',
????????????? '中證醫(yī)藥',
????????????? '基本面50',
????????????? '上證紅利',
????????????? '中證紅利',
????????????? '中證軍工',
????????????? '食品飲料',
????????????? '證券公司',
?????????????'養(yǎng)老產(chǎn)業(yè)',
????????????? '深證紅利',
????????????? '中證環(huán)保',
????????????? '創(chuàng)業(yè)板',
????????????? '恒生指數(shù)',
????????????? 'H股指數(shù)',
????????????? '中國互聯(lián)50',
????????????? '香港大盤',
????????????? '香港中小']
font = {'size': font_size, 'color': 'w','weight': 'black'}
for i in range(len(index_name)):
???index_name_word = index_name[i]
???for j in range(len(index_name_word)):
???????if index_name_word[j].isdigit():
???????????plt.text(i - offset_x + offset_x_num, index_info[i] - j * scale_y +len(index_name_word) * offset_y,
???????????????????? index_name_word[j],fontdict=font)
???????else:
???????????plt.text(i - offset_x, index_info[i] - j * scale_y +len(index_name_word) * offset_y, index_name_word[j],
???????????????????? fontdict=font)
time_end = '2020/12/21'
plt.plot([-1,len(index_info)],[-0.025,-0.025],color='#CCCCCC',linewidth=2,linestyle='--')
shift_x = 4.23
text_base_x = -0.8
text_base_shift_x = 0.55
plt.gca().add_patch(plt.Rectangle((-1+0*shift_x,-0.15),2.6,0.1,color='#4D8070'))
plt.text(text_base_x+0*shift_x,-0.123,'嚴(yán)重低估',fontdict=font)
plt.gca().add_patch(plt.Rectangle((-1+1*shift_x,-0.15),2.6,0.1,color='#21DB85'))
plt.text(text_base_x+text_base_shift_x+1*shift_x,-0.123,'低估',fontdict=font)
plt.gca().add_patch(plt.Rectangle((-1+2*shift_x,-0.15),2.6,0.1,color='#B0D91C'))
plt.text(text_base_x+2*shift_x,-0.123,'正常偏低',fontdict=font)
plt.gca().add_patch(plt.Rectangle((-1+3*shift_x,-0.15),2.6,0.1,color='#E3BD00'))
plt.text(text_base_x+text_base_shift_x+3*shift_x,-0.123,'正常',fontdict=font)
plt.gca().add_patch(plt.Rectangle((-1+4*shift_x,-0.15),2.6,0.1,color='#FF9421'))
plt.text(text_base_x+4*shift_x,-0.123,'正常偏高',fontdict=font)
plt.gca().add_patch(plt.Rectangle((-1+5*shift_x,-0.15),2.6,0.1,color='#F56600'))
plt.text(text_base_x+text_base_shift_x+5*shift_x,-0.123,'高估',fontdict=font)
plt.gca().add_patch(plt.Rectangle((-1+6*shift_x,-0.15),2.6,0.1,color='#B22222'))
plt.text(text_base_x+6*shift_x,-0.123,'嚴(yán)重高估',fontdict=font)
plt.title(time_end,size=28)
plt.axis('off')
g_globalMarket =pd.read_csv('./importfile/indexSeries/indexValuation/g_globalMarket/g_globalMarket.csv')
index_data_pe =g_globalMarket['pe'].values[1:len(g_globalMarket['pe']):1]
index_data_pb = g_globalMarket['pb'].values[1:len(g_globalMarket['pb']):1]
size_title = 28
size_label = 23
size_text = 35
size_line = 3
size_rotation = 20
plt_gap = 10
plt.show()
程序中用到的數(shù)據(jù)如果有問題,大家可以留言獲取募壕,歡迎大家一起交流溝通^_^
課程參考:網(wǎng)易云課堂? 基于Python的量化指數(shù)基金投資