Rust和大數(shù)據(jù)

筆者從事大數(shù)據(jù)行業(yè),最近對Rust語言比較感興趣挎袜,特地關(guān)注了一下Rust在大數(shù)據(jù)生態(tài)中的建設(shè)情況只厘,以下是一些由Rust編寫的大數(shù)據(jù)框架乘综,感興趣的同學(xué)可以關(guān)注相關(guān)項(xiàng)目:

Apache Arrow Ballista

VS Spark

Although Ballista is largely inspired by Apache Spark, there are some key differences.

  • The choice of Rust as the main execution language means that memory usage is deterministic and avoids the overhead of GC pauses.
  • Ballista is designed from the ground up to use columnar data, enabling a number of efficiencies such as vectorized processing (SIMD and GPU) and efficient compression. Although Spark does have some columnar support, it is still largely row-based today.
  • The combination of Rust and Arrow provides excellent memory efficiency and memory usage can be 5x - 10x lower than Apache Spark in some cases, which means that more processing can fit on a single node, reducing the overhead of distributed compute.
  • The use of Apache Arrow as the memory model and network protocol means that data can be exchanged between executors in any programming language with minimal serialization overhead.

總結(jié)來說就是以下3點(diǎn):

  1. Rust避免了GC符隙,效率更高
  2. 純列式存儲
  3. 采用Arrow內(nèi)存模型更高效

arroyo

VS Flink:

  • Serverless operations: Arroyo pipelines are designed to run in modern cloud environments, supporting seamless scaling, recovery, and rescheduling
  • High performance SQL: SQL is a first-class concern, with consistently excellent performance
  • Designed for non-experts: Arroyo cleanly separates the pipeline APIs from its internal implementation. You don’t need to be a streaming expert to build real-time data pipelines.

總結(jié)來說是以下3點(diǎn):

  1. Serverless暖途,更加適用與云生態(tài)
  2. 高性能SQL
  3. 易上手

Databend

VS Snowflake*

  • Cloud-Friendly: Seamlessly integrates with various cloud storages like AWS S3, Azure Blob, Google Cloud, and more.
  • High Performance: Built in Rust, utilizing SIMD and vectorized processing for rapid analytics. See ClickBench.
  • Cost-Efficient Elasticity: Innovative design for separate scaling of storage and computation, optimizing both costs and performance.
  • Easy Data Management: Integrated data preprocessing during ingestion eliminates the need for external ETL tools.
  • Data Version Control: Offers Git-like multi-version storage, enabling easy data querying, cloning, and reverting from any point in time.
  • Rich Data Support: Handles diverse data formats and types, including JSON, CSV, Parquet, ARRAY, TUPLE, MAP, and JSON.
  • AI-Enhanced Analytics: Offers advanced analytics capabilities with integrated AI Functions.
  • Community-Driven: Benefit from a friendly, growing community that offers an easy-to-use platform for all your cloud analytics.

總結(jié)來說是以下3點(diǎn):

  1. 云友好
  2. 高性能+低成本
  3. 豐富的數(shù)據(jù)支持和管理
  4. 開源
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市膏执,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌露久,老刑警劉巖更米,帶你破解...
    沈念sama閱讀 218,122評論 6 505
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異毫痕,居然都是意外死亡征峦,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,070評論 3 395
  • 文/潘曉璐 我一進(jìn)店門消请,熙熙樓的掌柜王于貴愁眉苦臉地迎上來栏笆,“玉大人,你說我怎么就攤上這事臊泰◎燃樱” “怎么了?”我有些...
    開封第一講書人閱讀 164,491評論 0 354
  • 文/不壞的土叔 我叫張陵,是天一觀的道長针饥。 經(jīng)常有香客問我厂抽,道長,這世上最難降的妖魔是什么丁眼? 我笑而不...
    開封第一講書人閱讀 58,636評論 1 293
  • 正文 為了忘掉前任筷凤,我火速辦了婚禮,結(jié)果婚禮上苞七,老公的妹妹穿的比我還像新娘藐守。我一直安慰自己,他們只是感情好蹂风,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,676評論 6 392
  • 文/花漫 我一把揭開白布卢厂。 她就那樣靜靜地躺著,像睡著了一般硫眨。 火紅的嫁衣襯著肌膚如雪足淆。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,541評論 1 305
  • 那天礁阁,我揣著相機(jī)與錄音巧号,去河邊找鬼。 笑死姥闭,一個胖子當(dāng)著我的面吹牛丹鸿,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播棚品,決...
    沈念sama閱讀 40,292評論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼靠欢,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了铜跑?” 一聲冷哼從身側(cè)響起门怪,我...
    開封第一講書人閱讀 39,211評論 0 276
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎锅纺,沒想到半個月后掷空,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,655評論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡囤锉,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,846評論 3 336
  • 正文 我和宋清朗相戀三年坦弟,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片官地。...
    茶點(diǎn)故事閱讀 39,965評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡酿傍,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出驱入,到底是詐尸還是另有隱情餐禁,我是刑警寧澤,帶...
    沈念sama閱讀 35,684評論 5 347
  • 正文 年R本政府宣布哈打,位于F島的核電站,受9級特大地震影響魄鸦,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜癣朗,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,295評論 3 329
  • 文/蒙蒙 一拾因、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧旷余,春花似錦绢记、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,894評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至炉旷,卻和暖如春签孔,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背窘行。 一陣腳步聲響...
    開封第一講書人閱讀 33,012評論 1 269
  • 我被黑心中介騙來泰國打工饥追, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人罐盔。 一個月前我還...
    沈念sama閱讀 48,126評論 3 370
  • 正文 我出身青樓但绕,卻偏偏與公主長得像,于是被迫代替她去往敵國和親惶看。 傳聞我的和親對象是個殘疾皇子捏顺,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,914評論 2 355

推薦閱讀更多精彩內(nèi)容