Machine learning and game theory is helping fight elephant poaching

Thisarticle is published in collaboration withQuartz.

圖1

Between 2009 and 2015,TanzaniaandMozambiquelost more than half of their elephants.

Image:REUTERS/Thomas Mukoya

Writtenby

Ananya

BhattacharyaContributor, Quartz

Published

Friday7 October 2016

Africa’s wildlife is in a constantstate of danger.

Between 2009 and 2015,TanzaniaandMozambiquelost more than halfof their elephants, many of them topoaching forivory smuggling. The decline has propelledAfrican vulture populations, who feed onelephant carcasses, toward extinction too. And attempts atcurtailing poachingand ivory smuggling haven’t helped thedwindling elephant population. InSouth Africa, rhinos are aprized poaching targettoo, for their horns. The attempts tokeep poachers at bay having failed, some conservationists have proposed theexpensive alternative ofairlifting rhinosaway from poaching sites.

Uganda, which remains“heavily implicated”in the illegal ivory trade accordingto the monitoring body CITES, is now testing a more direct way to crack down onthe illegal hunters before they even get to the animals. Using ProtectionAssistant for Wildlife Security (PAWS), a technology combining machine learningand game theory, researchers can predict where poachers may attack and tellrangers where to patrol.

圖2

Image: Guardian

“The basic idea is that youhave limited resources, you can’t be everywhere all the time,”UniversityofSouthern Californiaprofessor MilindTambe, who’s leading the initiative, told Quartz. “Where and when should you dopatrol?”

To make their predictions,researchers studied 12 years worth of data collected by rangers, from 2003 to2015, provided by the Wildlife Conservation Society. These included reports ofpast attacks, snare placements, and other illegal activities. The data aren’t perfect,says Tambe: Rangers don’t patrol the entire park, so it’s hard to get acomplete picture. But it’s enough to let a machine learning algorithm makeintelligent guesses about where poachers will strike in future.

When creating patrol routesfor rangers, “we want to randomize our patrols because we ourselves don’t wantto become predictable to the poachers,” Tambe said. That’s where game theorycomes in. It uses mathematical models to evaluate how rational human beingswould act, to then suggest routes that won’t be easily predictable.

The US Coastguard,Transportation Security Administration (TSA), the Federal Air Marshals Service,LA Sheriff’sDepartment, and other organizations have been using Tambe’s AI-game theorycombination technology to randomize their patrols since the early 2000s, hesays. The concept was tailored for wildlife preservation in 2014 and deployedfor testing inMalaysiain mid-2015. The current large-scale Ugandan tests inQueenElizabethNational Parkare backedby US organizations like the National Science Foundation and the Army ResearchOffice.

Rangers using PAWS inUgandahavefound 10 antelope traps and elephant snares in the past month, “a far betterscore card than they could usually expect,”Reuters reported. As robust as the technologymight be in theory, factors like poor mobile internet connections can get inthe way of communicating the results from PAWS that are used to direct rangers’routes. And there’s another threat: Armed poachers are quick topoint their gunsat the rangers.

.

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市,隨后出現(xiàn)的幾起案子析恋,更是在濱河造成了極大的恐慌,老刑警劉巖著恩,帶你破解...
    沈念sama閱讀 212,454評論 6 493
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異,居然都是意外死亡沼撕,警方通過查閱死者的電腦和手機儡嘶,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,553評論 3 385
  • 文/潘曉璐 我一進店門喇聊,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人蹦狂,你說我怎么就攤上這事誓篱∨蟊幔” “怎么了?”我有些...
    開封第一講書人閱讀 157,921評論 0 348
  • 文/不壞的土叔 我叫張陵窜骄,是天一觀的道長锦募。 經常有香客問我,道長啊研,這世上最難降的妖魔是什么御滩? 我笑而不...
    開封第一講書人閱讀 56,648評論 1 284
  • 正文 為了忘掉前任,我火速辦了婚禮党远,結果婚禮上削解,老公的妹妹穿的比我還像新娘。我一直安慰自己沟娱,他們只是感情好氛驮,可當我...
    茶點故事閱讀 65,770評論 6 386
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著济似,像睡著了一般矫废。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上砰蠢,一...
    開封第一講書人閱讀 49,950評論 1 291
  • 那天蓖扑,我揣著相機與錄音,去河邊找鬼台舱。 笑死律杠,一個胖子當著我的面吹牛,可吹牛的內容都是我干的竞惋。 我是一名探鬼主播柜去,決...
    沈念sama閱讀 39,090評論 3 410
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼拆宛!你這毒婦竟也來了嗓奢?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 37,817評論 0 268
  • 序言:老撾萬榮一對情侶失蹤浑厚,失蹤者是張志新(化名)和其女友劉穎股耽,沒想到半個月后,有當?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體钳幅,經...
    沈念sama閱讀 44,275評論 1 303
  • 正文 獨居荒郊野嶺守林人離奇死亡豺谈,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 36,592評論 2 327
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現(xiàn)自己被綠了贡这。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點故事閱讀 38,724評論 1 341
  • 序言:一個原本活蹦亂跳的男人離奇死亡厂榛,死狀恐怖盖矫,靈堂內的尸體忽然破棺而出丽惭,到底是詐尸還是另有隱情,我是刑警寧澤辈双,帶...
    沈念sama閱讀 34,409評論 4 333
  • 正文 年R本政府宣布责掏,位于F島的核電站,受9級特大地震影響湃望,放射性物質發(fā)生泄漏换衬。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 40,052評論 3 316
  • 文/蒙蒙 一证芭、第九天 我趴在偏房一處隱蔽的房頂上張望瞳浦。 院中可真熱鬧,春花似錦废士、人聲如沸叫潦。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,815評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽矗蕊。三九已至,卻和暖如春氢架,著一層夾襖步出監(jiān)牢的瞬間傻咖,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 32,043評論 1 266
  • 我被黑心中介騙來泰國打工岖研, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留卿操,地道東北人。 一個月前我還...
    沈念sama閱讀 46,503評論 2 361
  • 正文 我出身青樓缎玫,卻偏偏與公主長得像硬纤,于是被迫代替她去往敵國和親。 傳聞我的和親對象是個殘疾皇子赃磨,可洞房花燭夜當晚...
    茶點故事閱讀 43,627評論 2 350

推薦閱讀更多精彩內容

  • **2014真題Directions:Read the following text. Choose the be...
    又是夜半驚坐起閱讀 9,437評論 0 23
  • 全球首款FPS+MOBA手游《王者軍團》與玩家見面已有近半年之久邻辉,用精致的人物設計溪王、次世代的游戲畫面、宏大的故事背...
    天之游閱讀 143評論 0 0
  • 許久未見未聯(lián)系的朋友突然打來電話值骇,幸好我記得他現(xiàn)在在什么地方莹菱,不然看到那來自遠方的陌生來電第一直覺便是騷擾電話立馬...
    孤夜行閱讀 390評論 0 0
  • 跟了一個下午的門診 孫老師一下午看了100左右個病人 從剛開始不知道怎么維持秩序 到最后孫老師加班到很晚 頭都出汗...
    長白山的鹿閱讀 163評論 0 0