Seurat v3.0命令列表

標(biāo)準(zhǔn)的Seurat工作流程
標(biāo)準(zhǔn)的Seurat工作流程采用原始的單細(xì)胞表達(dá)數(shù)據(jù)崖媚,并旨在在數(shù)據(jù)中查找簇痛单。有關(guān)完整的詳細(xì)信息菱皆,請(qǐng)閱讀我們的教程须误。此過程包括數(shù)據(jù)標(biāo)準(zhǔn)化和可變特征選擇,數(shù)據(jù)縮放搔预,可變特征上的PCA霹期,共享最近鄰圖的構(gòu)建以及使用模塊化優(yōu)化器的聚類。最后拯田,我們使用t-SNE在二維空間中可視化群集历造。

pbmc.counts <- Read10X(data.dir = "~/Downloads/pbmc3k/filtered_gene_bc_matrices/hg19/")
pbmc <- CreateSeuratObject(counts = pbmc.counts)
pbmc <- NormalizeData(object = pbmc)
pbmc <- FindVariableFeatures(object = pbmc)
pbmc <- ScaleData(object = pbmc)
pbmc <- RunPCA(object = pbmc)
pbmc <- FindNeighbors(object = pbmc)
pbmc <- FindClusters(object = pbmc)
pbmc <- RunTSNE(object = pbmc)
DimPlot(object = pbmc, reduction = "tsne")   

對(duì)象互動(dòng)

使用Seurat v3.0,我們對(duì)Seurat對(duì)象進(jìn)行了改進(jìn)船庇,并增加了用于用戶交互的新方法吭产。我們還為鏡像R的普通任務(wù)引入了簡(jiǎn)單的函數(shù),例如子集和合并鸭轮。

# Get cell and feature names, and total numbers
colnames(x = pbmc)
Cells(object = pbmc)
rownames(x = pbmc)
ncol(x = pbmc)
nrow(x = pbmc)
# Get cell identity classes
Idents(object = pbmc)
levels(x = pbmc)

# Stash cell identity classes
pbmc[["old.ident"]] <- Idents(object = pbmc)
pbmc <- StashIdent(object = pbmc, save.name = "old.ident")

# Set identity classes
Idents(object = pbmc) <- "CD4 T cells"
Idents(object = pbmc, cells = 1:10) <- "CD4 T cells"

# Set identity classes to an existing column in meta data
Idents(object = pbmc, cells = 1:10) <- "orig.ident"
Idents(object = pbmc) <- "orig.ident"

# Rename identity classes
pbmc <- RenameIdents(object = pbmc, `CD4 T cells` = "T Helper cells")
# Subset Seurat object based on identity class, also see ?SubsetData
subset(x = pbmc, idents = "B cells")
subset(x = pbmc, idents = c("CD4 T cells", "CD8 T cells"), invert = TRUE)

# Subset on the expression level of a gene/feature
subset(x = pbmc, subset = MS4A1 > 3)

# Subset on a combination of criteria
subset(x = pbmc, subset = MS4A1 > 3 & PC1 > 5)
subset(x = pbmc, subset = MS4A1 > 3, idents = "B cells")

# Subset on a value in the object meta data
subset(x = pbmc, subset = orig.ident == "Replicate1")

# Downsample the number of cells per identity class
subset(x = pbmc, downsample = 100)
# Merge two Seurat objects
merge(x = pbmc1, y = pbmc2)
# Merge more than two Seurat objects
merge(x = pbmc1, y = list(pbmc2, pbmc3))    

訪問數(shù)據(jù)

在Seurat中訪問數(shù)據(jù)非常簡(jiǎn)單臣淤,使用明確定義的訪問器和設(shè)置器即可快速找到所需的數(shù)據(jù)。

# View metadata data frame, stored in object@meta.data
pbmc[[]]

# Retrieve specific values from the metadata
pbmc$nCount_RNA
pbmc[[c("percent.mito", "nFeature_RNA")]]

# Add metadata, see ?AddMetaData
random_group_labels <- sample(x = c("g1", "g2"), size = ncol(x = pbmc), replace = TRUE)
pbmc$groups <- random_group_labels
# Retrieve or set data in an expression matrix ('counts', 'data', and 'scale.data')
GetAssayData(object = pbmc, slot = "counts")
pbmc <- SetAssayData(object = pbmc, slot = "scale.data", new.data = new.data)
# Get cell embeddings and feature loadings
Embeddings(object = pbmc, reduction = "pca")
Loadings(object = pbmc, reduction = "pca")
Loadings(object = pbmc, reduction = "pca", projected = TRUE)
# FetchData can pull anything from expression matrices, cell embeddings, or metadata
FetchData(object = pbmc, vars = c("PC_1", "percent.mito", "MS4A1"))

數(shù)據(jù)可視化

Seurat有一個(gè)龐大的基于ggplot2的繪圖庫窃爷。默認(rèn)情況下邑蒋,所有繪圖功能都將返回ggplot2繪圖,從而允許使用ggplot2輕松自定義按厘。

# Dimensional reduction plot for PCA or tSNE
DimPlot(object = pbmc, reduction = "tsne")
DimPlot(object = pbmc, reduction = "pca")

# Dimensional reduction plot, with cells colored by a quantitative feature
FeaturePlot(object = pbmc, features = "MS4A1")

# Scatter plot across single cells, replaces GenePlot
FeatureScatter(object = pbmc, feature1 = "MS4A1", feature2 = "PC_1")
FeatureScatter(object = pbmc, feature1 = "MS4A1", feature2 = "CD3D")

# Scatter plot across individual features, repleaces CellPlot
CellScatter(object = pbmc, cell1 = "AGTCTACTAGGGTG", cell2 = "CACAGATGGTTTCT")

VariableFeaturePlot(object = pbmc)

# Violin and Ridge plots
VlnPlot(object = pbmc, features = c("LYZ", "CCL5", "IL32"))
RidgePlot(object = pbmc, feature = c("LYZ", "CCL5", "IL32"))

# Heatmaps
DoHeatmap(object = pbmc, features = heatmap_markers)
DimHeatmap(object = pbmc, reduction = "pca", cells = 200)

# New things to try!  Note that plotting functions now return ggplot2 objects, so you can add themes, titles, and options
# onto them
VlnPlot(object = pbmc, features = "MS4A1", split.by = "groups")
DotPlot(object = pbmc, features = c("LYZ", "CCL5", "IL32"), split.by = "groups")
FeaturePlot(object = pbmc, features = c("MS4A1", "CD79A"), blend = TRUE)
DimPlot(object = pbmc) + DarkTheme()
DimPlot(object = pbmc) + labs(title = "2,700 PBMCs clustered using Seurat and viewed\non a two-dimensional tSNE")
Seurat提供了許多預(yù)建主題医吊,可以將其添加到ggplot2圖中以進(jìn)行快速自定義

主題  功能
DarkTheme   設(shè)置帶有白色文本的黑色背景
FontSize    設(shè)置圖的各種元素的字體大小
NoAxes  刪除軸和軸文本
NoLegend    刪除所有圖例元素
RestoreLegend   刪除后恢復(fù)圖例
RotatedAxis 旋轉(zhuǎn)x軸標(biāo)簽
# Plotting helper functions work with ggplot2-based scatter plots, such as DimPlot, FeaturePlot, CellScatter, and
# FeatureScatter
plot <- DimPlot(object = pbmc) + NoLegend()

# HoverLocator replaces the former `do.hover` argument It can also show extra data throught the `information` argument,
# designed to work smoothly with FetchData
HoverLocator(plot = plot, information = FetchData(object = pbmc, vars = c("ident", "PC_1", "nFeature_RNA")))

# FeatureLocator replaces the former `do.identify`
select.cells <- FeatureLocator(plot = plot)

# Label points on a ggplot object
LabelPoints(plot = plot, points = TopCells(object = pbmc[["pca"]]), repel = TRUE)

多重分析功能

使用Seurat v3.0,您可以輕松地在單個(gè)細(xì)胞水平上在不同的測(cè)定之間切換(例如逮京,來自CITE-seq的ADT計(jì)數(shù)或經(jīng)過積分/批校正的數(shù)據(jù))∏涮茫現(xiàn)在,大多數(shù)功能都帶有化驗(yàn)參數(shù)懒棉,但是您可以將默認(rèn)化驗(yàn)設(shè)置為不重復(fù)的語句草描。

cbmc <- CreateSeuratObject(counts = cbmc.rna)
# Add ADT data
cbmc[["ADT"]] <- CreateAssayObject(counts = cbmc.adt)
# Run analyses by specifying the assay to use
NormalizeData(object = cbmc, assay = "RNA")
NormalizeData(object = cbmc, assay = "ADT", method = "CLR")

# Retrieve and set the default assay
DefaultAssay(object = cbmc)
DefaultAssay(object = cbmc) <- "ADT"
DefaultAssay(object = cbmc)

# Pull feature expression from both assays by using keys
FetchData(object = cbmc, vars = c("rna_CD3E", "adt_CD3"))

# Plot data from multiple assays using keys
FeatureScatter(object = cbmc, feature1 = "rna_CD3E", feature2 = "adt_CD3")

V2 V3 區(qū)別

image.png

image.png

https://satijalab.org/seurat/essential_commands.html

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市策严,隨后出現(xiàn)的幾起案子穗慕,更是在濱河造成了極大的恐慌,老刑警劉巖享钞,帶你破解...
    沈念sama閱讀 206,013評(píng)論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件揍诽,死亡現(xiàn)場(chǎng)離奇詭異诀蓉,居然都是意外死亡栗竖,警方通過查閱死者的電腦和手機(jī)暑脆,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,205評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來狐肢,“玉大人添吗,你說我怎么就攤上這事》菝” “怎么了碟联?”我有些...
    開封第一講書人閱讀 152,370評(píng)論 0 342
  • 文/不壞的土叔 我叫張陵,是天一觀的道長僵腺。 經(jīng)常有香客問我鲤孵,道長,這世上最難降的妖魔是什么辰如? 我笑而不...
    開封第一講書人閱讀 55,168評(píng)論 1 278
  • 正文 為了忘掉前任普监,我火速辦了婚禮,結(jié)果婚禮上琉兜,老公的妹妹穿的比我還像新娘凯正。我一直安慰自己,他們只是感情好豌蟋,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,153評(píng)論 5 371
  • 文/花漫 我一把揭開白布廊散。 她就那樣靜靜地躺著,像睡著了一般梧疲。 火紅的嫁衣襯著肌膚如雪允睹。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 48,954評(píng)論 1 283
  • 那天幌氮,我揣著相機(jī)與錄音缭受,去河邊找鬼。 笑死浩销,一個(gè)胖子當(dāng)著我的面吹牛贯涎,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播慢洋,決...
    沈念sama閱讀 38,271評(píng)論 3 399
  • 文/蒼蘭香墨 我猛地睜開眼塘雳,長吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了普筹?” 一聲冷哼從身側(cè)響起败明,我...
    開封第一講書人閱讀 36,916評(píng)論 0 259
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎太防,沒想到半個(gè)月后妻顶,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體酸员,經(jīng)...
    沈念sama閱讀 43,382評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,877評(píng)論 2 323
  • 正文 我和宋清朗相戀三年讳嘱,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了幔嗦。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片沥潭。...
    茶點(diǎn)故事閱讀 37,989評(píng)論 1 333
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡邀泉,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出钝鸽,到底是詐尸還是另有隱情汇恤,我是刑警寧澤,帶...
    沈念sama閱讀 33,624評(píng)論 4 322
  • 正文 年R本政府宣布拔恰,位于F島的核電站因谎,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏颜懊。R本人自食惡果不足惜财岔,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,209評(píng)論 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望饭冬。 院中可真熱鬧使鹅,春花似錦、人聲如沸昌抠。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,199評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽炊苫。三九已至裁厅,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間侨艾,已是汗流浹背执虹。 一陣腳步聲響...
    開封第一講書人閱讀 31,418評(píng)論 1 260
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留唠梨,地道東北人袋励。 一個(gè)月前我還...
    沈念sama閱讀 45,401評(píng)論 2 352
  • 正文 我出身青樓,卻偏偏與公主長得像当叭,于是被迫代替她去往敵國和親茬故。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,700評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容