Spark中存在的各種2G限制

motivation 動(dòng)機(jī)

The various 2G limit in Spark. Spark中存在的各種2G限制問題.

  1. When reading the data block is stored in the hard disk, the following code fragment is called. 獲取緩存在本地硬盤的數(shù)據(jù)塊時(shí),會(huì)調(diào)用以下代碼片段
  val iterToReturn: Iterator[Any] = {
    val diskBytes = diskStore.getBytes(blockId)
    if (level.deserialized) {
      val diskValues = serializerManager.dataDeserializeStream(
        blockId,
        diskBytes.toInputStream(dispose = true))(info.classTag)
      maybeCacheDiskValuesInMemory(info, blockId, level, diskValues)
    } else {
      val stream = maybeCacheDiskBytesInMemory(info, blockId, level, diskBytes)
        .map {_.toInputStream(dispose = false)}
        .getOrElse { diskBytes.toInputStream(dispose = true) }
      serializerManager.dataDeserializeStream(blockId, stream)(info.classTag)
    }
  }

  def getBytes(blockId: BlockId): ChunkedByteBuffer = {
    val file = diskManager.getFile(blockId.name)
    val channel = new RandomAccessFile(file, "r").getChannel
    Utils.tryWithSafeFinally {
      // For small files, directly read rather than memory map
      if (file.length < minMemoryMapBytes) {
        val buf = ByteBuffer.allocate(file.length.toInt)
        channel.position(0)
        while (buf.remaining() != 0) {
          if (channel.read(buf) == -1) {
            throw new IOException("Reached EOF before filling buffer\n" +
              s"offset=0\nfile=${file.getAbsolutePath}\nbuf.remaining=${buf.remaining}")
          }
        }
        buf.flip()
        new ChunkedByteBuffer(buf)
      } else {
        new ChunkedByteBuffer(channel.map(MapMode.READ_ONLY, 0, file.length))
      }
    } {
      channel.close()
    }
  }

The above code has the following problems: 上面的代碼存在以下問題:
* Channel.map(MapMode.READ_ONLY, 0, file.length) returns an instance of MappedByteBuffer. the size of MappedByteBuffer can not exceed 2G. channel.map(MapMode.READ_ONLY, 0, file.length) 返回的實(shí)例是MappedByteBuffer. MappedByteBuffer的大小不能超過2G
* When a Iterator[Any] is generated, need to load all the data into the memory,this may take up a lot of memory. 獲取Iterator[Any]時(shí)需要把全部數(shù)據(jù)加載到內(nèi)存中, 這可能會(huì)導(dǎo)致占用很多堆外內(nèi)存.
* MappedByteBuffer map a file to memory, and it's controlled by operator system, JVM can't control the memory. MappedByteBuffer 使用系統(tǒng)緩存,系統(tǒng)緩存不可控.

  1. When using kryo serialized data, the following code fragment is called: 在使用kryo序列化數(shù)據(jù)時(shí), 會(huì)調(diào)用以下代碼片段:

  override def serialize[T: ClassTag](t: T): ByteBuffer = {
    output.clear()
    val kryo = borrowKryo()
    try {
      kryo.writeClassAndObject(output, t)
    } catch {
      case e: KryoException if e.getMessage.startsWith("Buffer overflow") =>
        throw new SparkException(s"Kryo serialization failed: ${e.getMessage}. To avoid this, " +
          "increase spark.kryoserializer.buffer.max value.")
    } finally {
      releaseKryo(kryo)
    }
    ByteBuffer.wrap(output.toBytes)
  }

The above code has the following problems: 上面的代碼存在以下問題:
* The serialization data is stored in the output internal byte[], the size of byte[] can not exceed 2G. 序列化t時(shí)會(huì)把序列化后的數(shù)據(jù)存儲(chǔ)在output內(nèi)部byte[]里, byte[]的大小不能超過2G.

  1. When RPC writes data to be sent to a Channel, the following code fragment is called: 在RPC把要發(fā)送的數(shù)據(jù)寫入到Channel時(shí)會(huì)調(diào)用以下代碼片段:
  public long transferTo(final WritableByteChannel target, final long position) throws IOException {
    Preconditions.checkArgument(position == totalBytesTransferred, "Invalid position.");
    // Bytes written for header in this call.
    long writtenHeader = 0;
    if (header.readableBytes() > 0) {
      writtenHeader = copyByteBuf(header, target);
      totalBytesTransferred += writtenHeader;
      if (header.readableBytes() > 0) {
        return writtenHeader;
      }
    }

    // Bytes written for body in this call.
    long writtenBody = 0;
    if (body instanceof FileRegion) {
      writtenBody = ((FileRegion) body).transferTo(target, totalBytesTransferred - headerLength);
    } else if (body instanceof ByteBuf) {
      writtenBody = copyByteBuf((ByteBuf) body, target);
    }
    totalBytesTransferred += writtenBody;
    return writtenHeader + writtenBody;
  }

The above code has the following problems: ~~上面的代碼存在以下問題: ~~
* the size of ByteBuf cannot exceed 2G. ByteBuf的大小不能超過2G
* cannot transfer data over 2G in memory. ~~無法傳輸內(nèi)存中超過2G的數(shù)據(jù) ~~

  1. When decodes the RPC message received, the following code fragment is called: 解碼RPC接收的消息時(shí)調(diào)用以下代碼片段:
public final class MessageDecoder extends MessageToMessageDecoder<ByteBuf> {

  private static final Logger logger = LoggerFactory.getLogger(MessageDecoder.class);

  @Override
  public void decode(ChannelHandlerContext ctx, ByteBuf in, List<Object> out) {
    Message.Type msgType = Message.Type.decode(in);
    Message decoded = decode(msgType, in);
    assert decoded.type() == msgType;
    logger.trace("Received message {}: {}", msgType, decoded);
    out.add(decoded);
  }

  private Message decode(Message.Type msgType, ByteBuf in) {
    switch (msgType) {
      case ChunkFetchRequest:
        return ChunkFetchRequest.decode(in);

      case ChunkFetchSuccess:
        return ChunkFetchSuccess.decode(in);

      case ChunkFetchFailure:
        return ChunkFetchFailure.decode(in);

      default:
        throw new IllegalArgumentException("Unexpected message type: " + msgType);
    }
  }
}

The above code has the following problems: 上面的代碼存在以下問題:
* the size of ByteBuf cannot exceed 2G. ByteBuf的大小不能超過2G
* Must be in the receiver to complete the data can be decoded. 必須在接收到全部數(shù)據(jù)時(shí)才能解碼.

Goals

  • Setup for eliminating the various 2G limit in Spark. 解決Spark中存在的各種2G限制問題. (The 2G limit 1,2,3,4)
  • Support back-pressure flow control for remote data reading(experimental goal). ~~遠(yuǎn)程數(shù)據(jù)讀取支持back-pressure flow control(實(shí)驗(yàn)?zāi)繕?biāo)). ~~ (The 2G limit 4)
  • Add buffer pool(long-range goal). 添加緩存池(遠(yuǎn)期目標(biāo)).

Design

Setup for eliminating the various 2G limit in Spark. 解決Spark中存在的各種2G限制問題.

Replace ByteBuffer with ChunkedByteBuffer. 使用 ChunkedByteBuffer 替換 ByteBuffer. (The 2G limit 1,2)

ChunkedByteBuffer Introduction: ChunkedByteBuffer 介紹:

  • Store data with multiple ByteBuffer instance. 用多個(gè)ByteBuffer存儲(chǔ)數(shù)據(jù)
  • Support reference counting, a necessary condition to the feature of the buffer pool. 支持引用計(jì)數(shù),實(shí)現(xiàn)資源池必要條件
    Reference counted objects
  • Support serialization for easy transport. 支持序列化,方便傳輸
  • Support slice duplicate and copy operation. 支持類似于ByteBuffer的切片(slice), 副本(duplicate)和復(fù)制(copy)等操作, 方便處理
  • Can be efficiently converted to InputStream, ByteBuffer, byte[] and ByteBuf, etc. 可以高效轉(zhuǎn)換成InputStream, ByteBuffer, byte[]ByteBuf等,便于和其他接口對(duì)接
  • 可以方便的寫入數(shù)據(jù)到OutputStream
  1. Move the ChunkedByteBuffer class to common/network-common/src/main/java/org/apache/spark/network/buffer/. ~~把ChunkedByteBuffer類移動(dòng)到 common/network-common/src/main/java/org/apache/spark/network/buffer/. ~~
  2. Modify ManagedBuffer.nioByteBuffer's return value to ChunkedByteBuffer instance. 修改ManagedBuffer.nioByteBuffer的返回值為ChunkedByteBuffer實(shí)例. (The 2G limit 1)
  3. Further standardize the use of ManagedBuffer and ChunkedByteBuffer. 進(jìn)一步規(guī)范ManagedBufferChunkedByteBuffer的使用.
  • Data in memory, network, disk and other sources are represented with ManagedBuffer, 內(nèi)存,網(wǎng)絡(luò),硬盤和其他來源的數(shù)據(jù)使用ManagedBuffer表示.
  • ChunkedByteBuffer only represents the data in the memory. ChunkedByteBuffer只表示內(nèi)存中的數(shù)據(jù).
  • ManagedBuffer.nioByteBuffer is called only when there is sufficient memory. 只有在確認(rèn)有足夠的內(nèi)存保存數(shù)據(jù)時(shí)才會(huì)調(diào)用ManagedBuffer.nioByteBuffer.
  1. Modify the parameter of SerializerInstance.deserialize and the return value of SerializerInstance.serialize to ChunkedByteBuffer instance.
    修改SerializerInstance.deserialize方法的參數(shù)和SerializerInstance.serialize方法的返回值改為ChunkedByteBuffer實(shí)例. (The 2G limit 2)
def serialize[T: ClassTag](t: T): ChunkedByteBuffer = {
  output.clear()
  val out = ChunkedByteBufferOutputStream.newInstance()
  // The data is output to the OutputStream, rather than the internal byte[] in the output object.
  // ~~序列化后的數(shù)據(jù)輸出到OutputStream,而不是到output對(duì)象的內(nèi)部字節(jié)數(shù)組里.~~
  output.setOutputStream(out)
  val kryo = borrowKryo()
  kryo.writeClassAndObject(output, t)
  output.close()
  out.toChunkedByteBuffer
}
  1. Other changes. 其他修改.
Replace ByteBuf with InputStream. 使用 InputStream 替換 ByteBuf.
  1. Add InputStreamManagedBuffer class, used to convert InputStream instance to ManagedBuffer instance. 添加InputStreamManagedBuffer類,用于把InputStream轉(zhuǎn)換成ManagedBuffer實(shí)例. (The 2G limit 4)
  2. Modify NioManagedBuffer.convertToNetty method returns InputStream instances when the size of data is larger than Integer.MAX_VALUE. 修改NioManagedBuffer.convertToNetty方法在數(shù)據(jù)量大于Integer.MAX_VALUE時(shí)返回InputStream實(shí)例. (The 2G limit 3)
  3. Modify MessageWithHeader classes, support processing InputStream instance (The 2G limit 3) 修改MessageWithHeader類, 支持處理InputStream類型的body對(duì)象
  • 2.3.的修改結(jié)合起來支持傳輸內(nèi)存中超過2G的數(shù)據(jù).
  1. Modify the parameters of the Encodable.encode method to OutputStream instance. 修改Encodable.encode方法的參數(shù)為OutputStream實(shí)例. (The 2G limit 4)
    5.It can handle mixed storage data. ~~UploadBlock添加toInputStream方法,支持處理混合存儲(chǔ)數(shù)據(jù)(The 2G limit 3) ~~
public InputStream toInputStream() throws IOException {
  ChunkedByteBufferOutputStream out = ChunkedByteBufferOutputStream.newInstance();
  Encoders.Bytes.encode(out, type().id());
  encodeWithoutBlockData(out);
  // out.toChunkedByteBuffer().toInputStream() data in memory 
  // blockData.createInputStream() data in hard disk(FileInputStream)
  return new SequenceInputStream(out.toChunkedByteBuffer().toInputStream(),
      blockData.createInputStream());
}
  • 2, 3, 4 and 5 are combined to resolve the 2G limit in RPC message encoding and sending process. 2. 3. 4.5.組合起來解決RPC消息編碼和發(fā)送過程中的2G限制.
  1. Modify the parameters of the decode method of the classes who implement the Encodable interface to InputStream instance. ~~修改實(shí)現(xiàn)Encodable接口子類的decode方法參數(shù)為InputStream實(shí)例. (The 2G limit 4) ~~
  2. Modify TransportFrameDecoder class, use LinkedList<ByteBuf> to represent the Frame, remove the size limit of Frame. ~~修改TransportFrameDecoder類,使用LinkedList<ByteBuf> 來表示Frame,移除Frame的大小限制. ~~ (The 2G limit 4)
  3. Add ByteBufInputStream class, used to convert LinkedList<ByteBuf> instance to InputStream instance. 添加ByteBufInputStream類,用于把LinkedList<ByteBuf>包裝成InputStream實(shí)例. 在讀取完一個(gè)ByteBuf的數(shù)據(jù)時(shí)就會(huì)調(diào)用ByteBuf.release 方法釋放ByteBuf. (The 2G limit 4)
  4. Modify the parameters of RpcHandler.receive method to InputStream instance. 修改RpcHandler.receive方法的參數(shù)為InputStream實(shí)例. (The 2G limit 4)
  • 6, 7, 8 and 9 are combined to resolve the 2G limit in RPC message receiving and decoding process. 6. 7. 8.9.組合起來解決RPC消息接收和解碼的過程中的2G限制

Read data

Local data
  1. Only the data stored in the memory is represented by ChunkedByteBuffer, the other is represented by ManagedBuffer. 只有存儲(chǔ)在內(nèi)存中的數(shù)據(jù)用 ChunkedByteBuffer 表示,其他的數(shù)據(jù)都使用 ManagedBuffer 表示. (The 2G limit 1)
  • Modify DiskStore.getBytes's return value type to ManagedBuffer instance, which calls ManagedBuffer.nioByteBuffer only when the memory has enough space to store the ManagedBuffer data. 修改DiskStore.getBytes的返回值為ManagedBuffer實(shí)例, 只有在內(nèi)存有足夠的空間儲(chǔ)存ManagedBuffer數(shù)據(jù)時(shí)才會(huì)調(diào)用ManagedBuffer.nioByteBuffer方法.
Remote Data (The 2G limit 4)

There are three options: 有三個(gè)可選方案:

  1. Add InputStreamInterceptor to support propagate back-pressure to shuffle server(The option has been implemented): 添加InputStreamInterceptor支持propagate back-pressure 到 shuffle server端(該方案已經(jīng)實(shí)現(xiàn)):
  • When the number of ByteBuf in the cache exceeds a certain amount, call channel.config ().SetAutoRead (false) disable AUTO_READ, no longer automatically call channle.read (). ~~在緩存的 ByteBuf 數(shù)量超過一定數(shù)量時(shí)調(diào)用 channel.config().setAutoRead(false) 禁用AUTO_READ, 不再自動(dòng)調(diào)用 channle.read(). ~~
  • When the number of ByteBuf in the cache is smaller than a certain amount, call channel.config().setAutoRead(true) enable AUTO_READ . ~~在緩存的 ByteBuf 數(shù)量小于一定數(shù)量時(shí)調(diào)用channel.config().setAutoRead(true) 激活A(yù)UTO_READ. ~~
  • The advantage of this option is to support propagate back-pressure; drawback is that can lead semantic change the existing API, in some cases the IO retry function is invalid. 該方案的優(yōu)點(diǎn)是支持propagate back-pressure; 缺點(diǎn)是會(huì)導(dǎo)致現(xiàn)有API的語義改變, 某些情況下導(dǎo)致錯(cuò)誤重試功能失效.
  • 參考文檔:
    - Netty的read事件與AUTO_READ模式
    - TCP/IP詳解--舉例明白發(fā)送/接收緩沖區(qū)戒悠、滑動(dòng)窗口協(xié)議之間的關(guān)系
    - TCP 滑動(dòng)窗口協(xié)議 詳解
  • InputStreamInterceptor設(shè)計(jì)方案:
    • 創(chuàng)建一固定大小線程安全緩存池
    • netty線程接收到ByteBuf放到緩存池, 如果緩存的ByteBuf超過緩存容量的90%時(shí),調(diào)用channel.config().setAutoRead(false), 不在自動(dòng)接收數(shù)據(jù). 對(duì)端寫入堵塞.
    • 數(shù)據(jù)處理線程從緩沖池中取出ByteBuf, 如果緩存的ByteBuf數(shù)量少于緩存池容量的10%,調(diào)用channel.config().setAutoRead(true), 激活數(shù)據(jù)自動(dòng)讀取.
    • 如果處理完一個(gè)ByteBuf,釋放該ByteBuf, 并調(diào)用channle.read() 接收數(shù)據(jù).
  1. When the size of message is greater than a certain value, the message is written to disk, not take up memory. ~~在消息大小大于一定值時(shí),把消息寫到硬盤上,不再占用內(nèi)存. ~~
  • The advantage of this options is to take up very little memory, the disadvantage is to increase the disk IO. 該方案的優(yōu)點(diǎn)是占用很少的內(nèi)存,缺點(diǎn)是增加磁盤IO.
  1. Combined with buffer pool, qs far as possible stores data in memory. ~~結(jié)合緩存池,盡可能的把數(shù)據(jù)存儲(chǔ)在內(nèi)存里. ~~
  • Write message to the buffer pool when there has enough memory, otherwise write on disk. ~~把消息寫到緩存池, 在緩存池中有足夠的內(nèi)存時(shí),內(nèi)存不足時(shí)才寫到硬盤上. ~~

Add buffer pool

The buffer pool can reduce memory allocation, reduce GC time, improve the performance of spark core. 緩存池能夠減少內(nèi)存分配占用, 減少GC時(shí)間,提升程序性能

  1. Reduce the number of large objects created in the Eden area, according to experience twitter using buffer pools can significantly reduce the number of GC. 減少在eden區(qū)創(chuàng)建大對(duì)象的次數(shù),根據(jù)twitter的經(jīng)驗(yàn),使用緩存池能顯著減少GC次數(shù).
    Netty 4 Reduces GC Overhead by 5x at Twitter
  2. Use buffer pool to reduce the number of memory allocations and wiping zero. 使用緩存池能夠減少內(nèi)存分配和抹零次數(shù).
    Using as a generic library
實(shí)現(xiàn)該功能的難點(diǎn)有:
  1. Spark在使用ByteBuffer時(shí)沒有考慮釋放問題, 由java GC回收.
  2. 添加引用計(jì)數(shù)主動(dòng)釋放, 減少GC壓力, 需要添加引用計(jì)數(shù)和內(nèi)存泄露檢測(cè)相關(guān)代碼, 改動(dòng)大.
  3. 復(fù)用netty buffer代碼,支持內(nèi)存泄露檢查和動(dòng)態(tài)調(diào)整大小.
介紹文檔:
  1. Netty Buffers
  2. 深入淺出Netty內(nèi)存管理 PoolChunk
  3. jemalloc源碼解析-核心架構(gòu)jemalloc源碼解析-內(nèi)存管理
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市舟山,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌卤恳,老刑警劉巖累盗,帶你破解...
    沈念sama閱讀 218,204評(píng)論 6 506
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場(chǎng)離奇詭異突琳,居然都是意外死亡猛计,警方通過查閱死者的電腦和手機(jī)绪囱,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 93,091評(píng)論 3 395
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人窘俺,你說我怎么就攤上這事》萜螅” “怎么了甸鸟?”我有些...
    開封第一講書人閱讀 164,548評(píng)論 0 354
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)趟脂。 經(jīng)常有香客問我泰讽,道長(zhǎng),這世上最難降的妖魔是什么昔期? 我笑而不...
    開封第一講書人閱讀 58,657評(píng)論 1 293
  • 正文 為了忘掉前任已卸,我火速辦了婚禮,結(jié)果婚禮上硼一,老公的妹妹穿的比我還像新娘累澡。我一直安慰自己,他們只是感情好般贼,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,689評(píng)論 6 392
  • 文/花漫 我一把揭開白布愧哟。 她就那樣靜靜地躺著惑申,像睡著了一般。 火紅的嫁衣襯著肌膚如雪翅雏。 梳的紋絲不亂的頭發(fā)上圈驼,一...
    開封第一講書人閱讀 51,554評(píng)論 1 305
  • 那天,我揣著相機(jī)與錄音望几,去河邊找鬼绩脆。 笑死,一個(gè)胖子當(dāng)著我的面吹牛橄抹,可吹牛的內(nèi)容都是我干的靴迫。 我是一名探鬼主播,決...
    沈念sama閱讀 40,302評(píng)論 3 418
  • 文/蒼蘭香墨 我猛地睜開眼楼誓,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼玉锌!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起疟羹,我...
    開封第一講書人閱讀 39,216評(píng)論 0 276
  • 序言:老撾萬榮一對(duì)情侶失蹤主守,失蹤者是張志新(化名)和其女友劉穎,沒想到半個(gè)月后榄融,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體参淫,經(jīng)...
    沈念sama閱讀 45,661評(píng)論 1 314
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,851評(píng)論 3 336
  • 正文 我和宋清朗相戀三年愧杯,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了涎才。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 39,977評(píng)論 1 348
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡力九,死狀恐怖耍铜,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情跌前,我是刑警寧澤棕兼,帶...
    沈念sama閱讀 35,697評(píng)論 5 347
  • 正文 年R本政府宣布,位于F島的核電站舒萎,受9級(jí)特大地震影響程储,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜臂寝,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,306評(píng)論 3 330
  • 文/蒙蒙 一章鲤、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧咆贬,春花似錦败徊、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,898評(píng)論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽煤杀。三九已至,卻和暖如春沪哺,著一層夾襖步出監(jiān)牢的瞬間沈自,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 33,019評(píng)論 1 270
  • 我被黑心中介騙來泰國(guó)打工辜妓, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留枯途,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 48,138評(píng)論 3 370
  • 正文 我出身青樓籍滴,卻偏偏與公主長(zhǎng)得像酪夷,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子孽惰,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,927評(píng)論 2 355

推薦閱讀更多精彩內(nèi)容

  • **2014真題Directions:Read the following text. Choose the be...
    又是夜半驚坐起閱讀 9,505評(píng)論 0 23
  • 畫了一幅自創(chuàng)畫《民國(guó)時(shí)的約會(huì)》: 民國(guó)時(shí)期確切地說是從中華民國(guó)成立的1912年到新中國(guó)成立的1949年間晚岭。 那是一...
    雪盈禪心閱讀 641評(píng)論 1 7
  • 2015年8月3日 失眠。 總是會(huì)周期性地極度焦慮煩躁勋功,厭惡自己的電子產(chǎn)品依賴癥坦报、厭惡浪費(fèi)時(shí)間碌碌無為,而這一次甚...
    巽角閱讀 279評(píng)論 0 1
  • 莊子不二傳 第十五回 老保安甲死了酝润。都說是馬上風(fēng):早起還好好的燎竖,自己上廁大便呢,不知怎的就中風(fēng)倒下了要销。林場(chǎng)眾人...
    徐不二閱讀 699評(píng)論 1 3