?7emsp;本文綜合整理了一些關(guān)于推薦算法的資料,資料來(lái)源注明在文章尾。
-
Books:
1.《推薦系統(tǒng)實(shí)踐》項(xiàng)亮
??入門(mén)級(jí)教材咕宿,很薄,可以很快就看完蜡秽,把很多基礎(chǔ)而簡(jiǎn)單的問(wèn)題講的很詳細(xì)府阀。總體來(lái)說(shuō)芽突,此書(shū)性價(jià)比很高试浙,值得入手一本研讀
我買書(shū)喜歡上亞馬遜, 因?yàn)閬嗰R遜上很多都可以試讀,這本書(shū)亞馬遜就提供了試讀寞蚌,推薦大家先去試讀下田巴,再?zèng)Q定有沒(méi)有購(gòu)買價(jià)值。
2.《Recommender Systems Handbook》Paul B. Kantor
??有這本書(shū)就不用其它的了挟秤,很細(xì)很全固额,就是英文原版的有點(diǎn)小貴,真有志于做推薦系統(tǒng)的才去買吧煞聪,用到哪就翻書(shū)查。按人家的說(shuō)法逝慧,所有敢自稱handbook的書(shū)都是神書(shū)昔脯,沒(méi)看過(guò)這本書(shū)出去吹牛逼時(shí)你都不好意思說(shuō)自己是做推薦的。
3. Programming collective intelligence: building smart web 2.0 applications[M]
??寓教于樂(lè)的一本入門(mén)教材笛臣,附有可以直接動(dòng)手實(shí)踐的toy級(jí)別代碼
4. Jannach D, Zanker M, Felfernig A, et al. Recommender systems: an introduction[M]. Cambridge University Press, 2010
??可以認(rèn)為是2010年前推薦系統(tǒng)論文的綜述集合
5. Celma O. Music recommendation and discovery[M]. Springer, 2010
??主要內(nèi)容集中在音樂(lè)推薦云稚,領(lǐng)域非常專注于音樂(lè)推薦,包括選取的特征沈堡,評(píng)測(cè)時(shí)如何考慮音樂(lè)因素静陈。
6. Word sense disambiguation: Algorithms and applications[M]. Springer Science+ Business Media,2006
??如果涉及到關(guān)鍵詞推薦,或是文本推薦, 則可以查閱該書(shū)鲸拥。
-
Conference & Journal:
-
the ACM Conference on Recommender Systems,Recsys
?鏈接:https://recsys.acm.org/ -
KDD
?鏈接:http://www.kdd.org/ -
Special Interest Group on Information Retrieval,SIGIR
?鏈接:http://sigir.org/
-
Papers:
綜述類:
- 2002 - Hybrid Recommender Systems: Survey and Experiments
- 2005 - Towards the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions拐格。最經(jīng)典的推薦算法綜述
- 2009 - 個(gè)性化推薦系統(tǒng)的研究進(jìn)展.周濤等
- 2011 - Collaborative Filtering Recommender Systems. JB Schafer 關(guān)于協(xié)同過(guò)濾最經(jīng)典的綜述
- 2012 - 項(xiàng)亮的博士論文《動(dòng)態(tài)推薦系統(tǒng)關(guān)鍵技術(shù)研究》
- 2012 - Recommender systems L Lü, M Medo, CH Yeung, YC Zhang, ZK Zhang, T Zhou Physics Reports 519 (1), 1-49 (https://arxiv.org/abs/1202.1112)
- 2017-基于深度學(xué)習(xí)的推薦系統(tǒng)_黃立威
協(xié)同過(guò)濾:
1.matrix factorization techniques for recommender systems. Y Koren
2.Using collaborative filtering to weave an information Tapestry. David Goldberg (協(xié)同過(guò)濾第一次被提出)
3.Item-Based Collaborative Filtering Recommendation Algorithms. Badrul Sarwar , George Karypis, Joseph Konstan .etl
4.Application of Dimensionality Reduction in Recommender System -- A Case Study. Badrul M. Sarwar, George Karypis, Joseph A. Konstan etl
5.Probabilistic Memory-Based Collaborative Filtering. Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu,and Hans-Peter Kriegel
6.Recommendation systems:a probabilistic analysis. Ravi Kumar Prabhakar Raghavan.etl
7.Amazon.com recommendations: item-to-item collaborative filtering. Greg Linden, Brent Smith, and Jeremy York
8.Evaluation of Item-Based Top- N Recommendation Algorithms. George Karypis
9.Probabilistic Matrix Factorization. Ruslan Salakhutdinov
10.Tensor Decompositions,Alternating Least Squares and other Tales. Pierre Comon, Xavier Luciani, André De Almeida
基于內(nèi)容的推薦:
1.Content-Based Recommendation Systems. Michael J. Pazzani and Daniel Billsus
基于標(biāo)簽的推薦:
1.Tag-Aware Recommender Systems: A State-of-the-Art Survey. Zi-Ke Zhang(張子柯), Tao Zhou(周 濤), and Yi-Cheng Zhang(張翼成)
推薦評(píng)估指標(biāo):
1、推薦系統(tǒng)評(píng)價(jià)指標(biāo)綜述. 朱郁筱刑赶,呂琳媛
2捏浊、Accurate is not always good:How Accuacy Metrics have hurt Recommender Systems
3、Evaluating Recommendation Systems. Guy Shani and Asela Gunawardana
4撞叨、Evaluating Collaborative Filtering Recommender Systems. JL Herlocker
推薦多樣性和新穎性:
- Improving recommendation lists through topic diversification. Cai-Nicolas Ziegler
Sean M. McNee, Joseph A.Konstan,Georg Lausen - Fusion-based Recommender System for Improving Serendipity
- Maximizing Aggregate Recommendation Diversity:A Graph-Theoretic Approach
- The Oblivion Problem:Exploiting forgotten items to improve Recommendation diversity
- A Framework for Recommending Collections
- Improving Recommendation Diversity. Keith Bradley and Barry Smyth
推薦系統(tǒng)中的隱私性保護(hù):
1.Collaborative Filtering with Privacy. John Canny
2.Do You Trust Your Recommendations? An Exploration Of Security and Privacy Issues in Recommender Systems. Shyong K “Tony” Lam, Dan Frankowski, and John Ried.
3.Privacy-Enhanced Personalization. Alfred Kobsa.etl
4.Differentially Private Recommender Systems:Building Privacy into the
Netflix Prize Contenders. Frank McSherry and Ilya Mironov Microsoft Research,
Silicon Valley Campus
5.When being Weak is Brave: Privacy Issues in Recommender Systems. Naren Ramakrishnan, Benjamin J. Keller,and Batul J. Mirza
推薦冷啟動(dòng)問(wèn)題:
1.Tied Boltzmann Machines for Cold Start Recommendations. Asela Gunawardana.etl
2.Pairwise Preference Regression for Cold-start Recommendation. Seung-Taek Park, Wei Chu
3.Addressing Cold-Start Problem in Recommendation Systems. Xuan Nhat Lam.etl
4.Methods and Metrics for Cold-Start Recommendations. Andrew I. Schein, Alexandrin P opescul, Lyle H. U ngar
bandit(老虎機(jī)算法,可緩解冷啟動(dòng)問(wèn)題):
1.Bandits and Recommender Systems. Jeremie Mary, Romaric Gaudel, Philippe Preux
2.Multi-Armed Bandit Algorithms and Empirical Evaluation
基于社交網(wǎng)絡(luò)的推薦:
- Social Recommender Systems. Ido Guy and David Carmel
- A Social Networ k-Based Recommender System(SNRS). Jianming He and Wesley W. Chu
- Measurement and Analysis of Online Social Networks.
- Referral Web:combining social networks and collaborative filtering
基于知識(shí)的推薦:
1.Knowledge-based recommender systems. Robin Burke
2.Case-Based Recommendation. Barry Smyth
3.Constraint-based Recommender Systems: Technologies and Research Issues. A. Felfernig. R. Burke
其他:
Trust-aware Recommender Systems. Paolo Massa and Paolo Avesani
推薦幾篇對(duì)工業(yè)界比較有影響的論文吧: - The Wisdom of The Few 豆瓣阿穩(wěn)在介紹豆瓣猜的時(shí)候極力推薦過(guò)這篇論文金踪,豆瓣猜也充分應(yīng)用了這篇論文中提出的算法;
- Restricted Boltzmann Machines for Collaborative Filtering 目前Netflix使用的要推薦算法之一牵敷;
- Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model 這個(gè)無(wú)需強(qiáng)調(diào)重要性胡岔,LFM幾乎應(yīng)用到了每一個(gè)商業(yè)推薦系統(tǒng)中;
- Collaborative Filtering with Temporal Dynamics 加入時(shí)間因素的SVD++模型枷餐,曾在Netflix Prize中大放溢彩的算法模型靶瘸;
- Context-Aware Recommender Systems 基于上下文的推薦模型,現(xiàn)在不論是工業(yè)界還是學(xué)術(shù)界都非臣馓裕火的一個(gè)topic奕锌;
- Toward the next generation of recommender systems 對(duì)下一代推薦系統(tǒng)的一個(gè)綜述;
- Item-Based Collaborative Filtering Recommendation Algorithms 基于物品的協(xié)同過(guò)濾村生,Amazon等電商網(wǎng)站的主力模型算法之一惊暴;
- Information Seeking-Convergence of Search, Recommendations and Advertising 搜索、推薦和廣告的大融合也是未來(lái)推薦系統(tǒng)的發(fā)展趨勢(shì)之一趁桃;
- Ad Click Prediction: a View from the Trenches 可以對(duì)推薦結(jié)果做CTR預(yù)測(cè)排序辽话;
- Performance of Recommender Algorithm on top-n Recommendation Task TopN預(yù)測(cè)的一個(gè)綜合評(píng)測(cè),TopN現(xiàn)在是推薦系統(tǒng)的主流話題卫病,可以全部實(shí)現(xiàn)這篇文章中提到的算法大概對(duì)TopN有個(gè)體會(huì)油啤;
-
http://dsec.pku.edu.cn/~jinlong/publication/wjlthesis.pdf 北大一博士對(duì)Netflix Prize算法的研究做的畢業(yè)論文,這篇論文本身對(duì)業(yè)界影響不大蟀苛,但是Netflix Prize中運(yùn)用到的算法極大地推動(dòng)了推薦系統(tǒng)的發(fā)展益咬;
通過(guò)這些論文可以對(duì)推薦系統(tǒng)有個(gè)總體上的全面認(rèn)識(shí),并且能夠了解一些推薦系統(tǒng)的發(fā)展趨勢(shì)帜平。剩下的就是多實(shí)踐了幽告。
推薦兩篇必看(最好能自己實(shí)現(xiàn))論文, 其他的論文其實(shí)都是在這基礎(chǔ)上build起來(lái)的裆甩。
http://Amazon.com Recommendations Item-to-Item Collaborative Filtering
http://www.cin.ufpe.br/~idal/rs/Amazon-Recommendations.pdf
MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS
https://datajobs.com/data-science-repo/Recommender-Systems-%5BNetflix%5D.pdf
推薦兩篇必看(最好能自己實(shí)現(xiàn))論文冗锁, 其他的論文其實(shí)都是在這基礎(chǔ)上build起來(lái)的。
http://Amazon.com Recommendations Item-to-Item Collaborative Filtering
http://www.cin.ufpe.br/~idal/rs/Amazon-Recommendations.pdf
MATRIX FACTORIZATION TECHNIQUES FOR RECOMMENDER SYSTEMS
https://datajobs.com/data-science-repo/Recommender-Systems-%5BNetflix%5D.pdf
-
Articles:
基于用戶投票的排名算法(一):Delicious和Hacker News http://www.ruanyifeng.com/blog/2012/02/ranking_algorithm_hacker_news.html
youtube的推薦算法經(jīng)歷過(guò)好幾次大的改動(dòng)嗤栓,都有論文發(fā)表的:https://www.zhihu.com/question/20829671
Netflix推薦算法冻河,讓每個(gè)人看到不一樣的電影海報(bào):https://juejin.im/post/5a2e71e351882575d42f5651
淘寶網(wǎng)的推薦算法:https://www.zhihu.com/question/29108284
-
Website:
- leetcode箍邮,最近很火的算法網(wǎng)站:https://leetcode.com/
-
Blog:
- 一些數(shù)據(jù)挖掘與分析文章的翻譯(https://github.com/ictar/python-doc/tree/master/Science%20and%20Data%20Analysis)
- Recommending music on Spotify with deep learning
- BreezeDeus
-
餓了么推薦系統(tǒng):從0到1 - 極客頭條 - CSDN.NET
https://github.com/ictar/python-doc/tree/master/Science%20and%20Data%20Analysis
- Recommendation Engines Seminar Paper, Thomas Hess, 2009: 推薦引擎的總結(jié)性文章,Thomas 給出推薦引擎的模型叨叙,各種推薦機(jī)制的工作原理锭弊,并分析了推薦引擎面臨的眾多問(wèn)題。
- Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions, Adomavicius, G.; Tuzhilin, A., 2005:2005 年的論文摔敛,對(duì)現(xiàn)今流行的推薦技術(shù)進(jìn)行總結(jié)廷蓉,深入具體的實(shí)現(xiàn)技術(shù)方法,同時(shí)也提出了對(duì)下一代推薦引擎的展望马昙。
- A Taxonomy of RecommenderAgents on the Internet, Montaner, M.; Lopez, B.; de la Rosa, J. L., 2003, 對(duì)互聯(lián)網(wǎng)上推薦引擎進(jìn)行總結(jié)桃犬,給出的不同推薦方法的分類和特點(diǎn),幫助讀者對(duì)推薦引擎有全面的認(rèn)識(shí)行楞。
- Amazon: www.amazon.com:推薦技術(shù)的先驅(qū)攒暇,Amazon 在 B2C 領(lǐng)域的推薦技術(shù)值得大家參考。
- 豆瓣:www.douban.com:作為國(guó)內(nèi)社交網(wǎng)絡(luò)的先驅(qū)子房,豆瓣在推薦技術(shù)上也處于領(lǐng)先的位置形用,同時(shí)對(duì)于不同內(nèi)容的推薦策略有深入的研究。
- 個(gè)性化推薦技術(shù)漫談:對(duì)個(gè)性化推薦技術(shù)的基本原理進(jìn)行簡(jiǎn)要介紹证杭,提出了作者對(duì)優(yōu)秀的個(gè)性化推薦的多角度認(rèn)識(shí)
- Google Recommender System Group:推薦系統(tǒng)的 Google 討論組田度,有很多關(guān)于推薦引擎的有趣討論
- Recommender System Algorithms:關(guān)于推薦引擎算法的資源
- Design of Recommender System:關(guān)于推薦引擎的設(shè)計(jì)方法的介紹
-
How to build a recommender system:這個(gè)演示給出了如何構(gòu)建一個(gè)推薦引擎,并結(jié)合例子詳細(xì)介紹了基于協(xié)同過(guò)濾的推薦策略解愤。
-
Lecture:
【直播回顧】21天搭建推薦系統(tǒng):實(shí)現(xiàn)“千人千面”個(gè)性化推薦(含視頻)-博客-云棲社區(qū)-阿里云
-
Code:
https://github.com/MashiMaroLjc/ML-and-DM-in-action
https://github.com/laozhaokun/movie_recommender-
推薦算法庫(kù):
SvdFeature
LibFM
Mahout
MLib
reference: