Scrapy+Redis+MySQL分布式爬取商品信息

源代碼來自于基于Scrapy的Python3分布式淘寶爬蟲,做了一些改動,對失效路徑進行了更新毁葱,增加了一些內容。使用了隨機User-Agent贰剥,scrapy-redis分布式爬蟲倾剿,使用MySQL數據庫存儲數據。


目錄
第一步 創(chuàng)建并配置scrapy項目
第二步 將數據導出至json文件和MySQL數據庫
第三步 設置隨機訪問頭User-Agent
第四步 配置scrapy-redis實現分布式爬蟲

數據分析部分:2018.7淘寶粉底市場數據分析


開發(fā)環(huán)境

  • 電腦系統(tǒng):macOS High Sierra
  • Python第三方庫:scrapy鸠澈、pymysql柱告、scrapy-redis、redis笑陈、redis-py
  • Python版本:Anaconda 4.5.8 ,集成Python版本 3.6.4
  • 數據庫: MySQL 8.0.11际度、redis 4.0.1

第一步 創(chuàng)建scrapy項目

cmd輸入:

scrapy startproject taobao
cd taobao
scrapy genspider -t basic tb taobao.com

1. 爬蟲程序編寫tb.py

  • 在源代碼的基礎上添加了銷量、產品描述信息的爬群住乖菱;
  • 更新了url分類判斷的方式;
  • 抓包取得的評論數網頁格式有變化蓬网,更新了正則表達式窒所。
# -*- coding: utf-8 -*-
import scrapy
import re
from scrapy.http import Request
from taobao.items import TaobaoItem
import urllib.request

class TbSpider(scrapy.Spider):
    name = 'tb'
    allowed_domains = ['taobao.com']
    start_urls = ['http://taobao.com/']

    def parse(self, response):
        key = input("請輸入你要爬取的關鍵詞\t")
        pages = input("請輸入你要爬取的頁數\t")
        print("\n")
        print("當前爬取的關鍵詞是",key)
        print("\n")
        for i in range(0, int(pages)):
            url = "https://s.taobao.com/search?q=" + str(key) + "&s=" + str(44*i)
            yield Request(url=url, callback=self.page)
        pass
    #搜索頁
    def page(self,response):
        body = response.body.decode('utf-8', 'ignore')

        pat_id = '"nid":"(.*?)"'    #匹配id
        pat_now_price = '"view_price":"(.*?)"'      #匹配現價格
        pat_address = '"item_loc":"(.*?)"'      #匹配商家地址
        pat_sale = '"view_sales":"(.*?)人付款"' #銷量

        all_id = re.compile(pat_id).findall(body)
        all_now_price = re.compile(pat_now_price).findall(body)
        all_address = re.compile(pat_address).findall(body)
        all_sale = re.compile(pat_sale).findall(body)

        for i in range(0, len(all_id)):
            this_id = all_id[i]
            now_price = all_now_price[i]
            address = all_address[i]
            sale_count = all_sale[i] 
            url = "https://item.taobao.com/item.htm?id=" + str(this_id)
            yield Request(url=url, callback=self.next, meta={ 'now_price': now_price, 'address': address,'sale_count':sale_count})
            pass
        pass
    #詳情頁
    def next(self, response):
        item = TaobaoItem()
        url = response.url
      
        #由于淘寶和天貓的某些信息采用不同方式的Ajax加載,做一個分類
        if 'tmall' in url:  #天貓帆锋、天貓超市吵取、天貓國際
            title = response.xpath("http://html/head/title/text()").extract()  #獲取商品名稱
            #price = response.xpath("http://span[@class='tm-count']/text()").extract()  
            #這里獲取商品原價格-但一直抓到的是空值,Xpath在xpath finder里驗證有效锯厢,暫時不知道為什么皮官。。实辑。由于后續(xù)會影響到數據庫的寫入捺氢,暫時隱了
            #以下是產品描述信息欄內的信息獲得,檢索文字標簽獲得對應內容:
            brand = response.xpath("http://li[@id='J_attrBrandName']/text()").re('品牌:\xa0(.*?)$')   #品牌
            produce = response.xpath("http://li[contains(text(),'產地')]/text()").re('產地:\xa0(.*?)$') #產地
            effect = response.xpath("http://li[contains(text(),'功效')]/text()").re('功效:\xa0(.*?)$') #功效
            pat_id = 'id=(.*?)&'
            this_id = re.compile(pat_id).findall(url)[0]
            pass       
        else:       #淘寶
            title = response.xpath("/html/head/title/text()").extract() #獲取商品名稱
            #price = response.xpath("http://em[@class = 'tb-rmb-num']/text()").extract()  
            #獲取商品原價格-和上面保持一致
            brand = response.xpath("http://li[contains(text(),'品牌')]/text()").re('品牌:\xa0(.*?)$') #品牌
            produce = response.xpath("http://li[contains(text(),'產地')]/text()").re('產地:\xa0(.*?)$') #產地
            effect = response.xpath("http://li[contains(text(),'功效')]/text()").re('功效:\xa0(.*?)$') #功效
            pat_id = 'id=(.*?)$'
            this_id = re.compile(pat_id).findall(url)[0]
            pass

        #抓取評論總數
        comment_url = "https://rate.taobao.com/detailCount.do?callback=jsonp144&itemId="+str(this_id) 
        comment_data = urllib.request.urlopen(comment_url).read().decode('utf-8', 'ignore')
        each_comment = '"count":(.*?)}' 
        comment = re.compile(each_comment).findall(comment_data)


        item['title'] = title
        item['link'] = url
        #item['price'] = price
        item['now_price'] = response.meta['now_price']
        item['comment'] = comment
        item['address'] = response.meta['address']
        item['sale_count'] = response.meta['sale_count']
        item['brand']=brand
        item['produce']=produce
        item['effect']=effect
        
        yield item

2. settings.py配置

設置用戶代理剪撬、不遵循robots.txt協(xié)議摄乒、取消Cookies。

# -*- coding: utf-8 -*-

# Scrapy settings for taobao project
#
# For simplicity, this file contains only settings considered important or
# commonly used. You can find more settings consulting the documentation:
#
#     http://doc.scrapy.org/en/latest/topics/settings.html
#     http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#     http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html

BOT_NAME = 'taobao'

SPIDER_MODULES = ['taobao.spiders']
NEWSPIDER_MODULE = 'taobao.spiders'


# Crawl responsibly by identifying yourself (and your website) on the user-agent
USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:54.0) Gecko/20100101 Firefox/54.0'   #設置用戶代理值

# Obey robots.txt rules
ROBOTSTXT_OBEY = False  #不遵循 robots.txt協(xié)議

# Configure maximum concurrent requests performed by Scrapy (default: 16)
CONCURRENT_REQUESTS = 100

# Configure a delay for requests for the same website (default: 0)
# See http://scrapy.readthedocs.org/en/latest/topics/settings.html#download-delay
# See also autothrottle settings and docs
# DOWNLOAD_DELAY = 0.25 #設置訪問延遲
# The download delay setting will honor only one of:
#CONCURRENT_REQUESTS_PER_DOMAIN = 16
#CONCURRENT_REQUESTS_PER_IP = 16

# Disable cookies (enabled by default)
COOKIES_ENABLED = False #取消Cookies

# Disable Telnet Console (enabled by default)
#TELNETCONSOLE_ENABLED = False

# Override the default request headers:
#DEFAULT_REQUEST_HEADERS = {
#   'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
#   'Accept-Language': 'en',
#}

# Enable or disable spider middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/spider-middleware.html
#SPIDER_MIDDLEWARES = {
#    'taobao.middlewares.TaobaoSpiderSpiderMiddleware': 543,
#}

# Enable or disable downloader middlewares
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html
#DOWNLOADER_MIDDLEWARES = {
#    'taobao.middlewares.MyCustomDownloaderMiddleware': 543,
#}

# Enable or disable extensions
# See http://scrapy.readthedocs.org/en/latest/topics/extensions.html
#EXTENSIONS = {
#    'scrapy.extensions.telnet.TelnetConsole': None,
#}

# Configure item pipelines
# See http://scrapy.readthedocs.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
    'taobao.pipelines.TaobaoJsonPipeline':300  #導出文json文件
    'taobao.pipelines.TaobaoPipeline':200   #導出至Mysql
}

# Enable and configure the AutoThrottle extension (disabled by default)
# See http://doc.scrapy.org/en/latest/topics/autothrottle.html
#AUTOTHROTTLE_ENABLED = True
# The initial download delay
#AUTOTHROTTLE_START_DELAY = 5
# The maximum download delay to be set in case of high latencies
#AUTOTHROTTLE_MAX_DELAY = 60
# The average number of requests Scrapy should be sending in parallel to
# each remote server
#AUTOTHROTTLE_TARGET_CONCURRENCY = 1.0
# Enable showing throttling stats for every response received:
#AUTOTHROTTLE_DEBUG = False

# Enable and configure HTTP caching (disabled by default)
# See http://scrapy.readthedocs.org/en/latest/topics/downloader-middleware.html#httpcache-middleware-settings
#HTTPCACHE_ENABLED = True
#HTTPCACHE_EXPIRATION_SECS = 0
#HTTPCACHE_DIR = 'httpcache'
#HTTPCACHE_IGNORE_HTTP_CODES = []
#HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.FilesystemCacheStorage'

3.在items.py中添加存儲容器對象

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# http://doc.scrapy.org/en/latest/topics/items.html

import scrapy

class TaobaoItem(scrapy.Item):
    # define the fields for your item here like:
    # name = scrapy.Field()
    title = scrapy.Field()
    link = scrapy.Field()
    #price = scrapy.Field()
    comment = scrapy.Field()
    now_price = scrapy.Field()
    address = scrapy.Field()
    sale_count = scrapy.Field()
    brand =  scrapy.Field()
    produce = scrapy.Field()
    effect = scrapy.Field()
    pass

第二步 將數據導出并存儲至Mysql數據庫

1. 將數據導出為json

在pipeline.py文件內寫入如下內容,在setting.py文件中開啟(詳見settings.py),

# -*- coding: utf-8 -*-
import json
import codecs

class TaobaoJsonPipeline:
    def __init__(self):
        self.file=codecs.open('taobao.json','w',encoding='utf-8')
    def process_item(self, item, spider):
        lines = json.dumps(dict(item), ensure_ascii=False) + '\n'
        self.file.write(lines)
        return item
    def close_spider(self, spider):
        self.file.close()

運行爬蟲馍佑,在終端輸入

scrapy crawl tb --nolog

導出后文件自動存儲在爬蟲目錄下:


屏幕快照 2018-07-20 下午9.02.19.png

2.將數據導出至MySQL

1)首先要先下載安裝MySQL數據庫

下載鏈接斋否,dmg格式,一鍵安裝挤茄。(安裝過程中要求設置root用戶的密碼如叼,選擇普通加密,如果選高級加密的話后面會一直連接失敗....)
設置完成后開啟數據庫:

屏幕快照 2018-07-20 下午9.07.37.png

可視化操作安裝Workbentch穷劈,
Workbentch連接數據庫,建立新的數據庫踊沸,并新建表格并設置好字段:
屏幕快照 2018-07-22 下午8.53.15.png

2)在Python中安裝pymysql包

cmd輸入:conda install pymysql
或者直接用pip install pymysql

3)pipelines.py文件設置

這里數據庫存儲使用了異步操作歇终,目的是防止插入數據的速度跟不上網頁的爬取解析速度,造成阻塞逼龟。Python 中提供了 Twisted 框架來實現異步操作评凝,該框架提供了一個連接池,通過連接池可以實現數據插入 MySQL 的異步化腺律。詳細教程參考Scrapy 入門筆記(4) --- 使用 Pipeline 保存數據

在pipeline.py文件中加入以下代碼奕短,并在setting.py中開啟對應pipeline(詳見settings.py),

# -*- coding: utf-8 -*-
import pymysql
import pymysql.cursors
from twisted.enterprise import adbapi

class TaobaoPipeline(object):  
    #鏈接數據庫
    def __init__(self,):
        dbparms = dict(
            host='127.0.0.1',
            db='數據庫名稱',
            user='root',
            passwd='數據庫密碼',
            charset='utf8',
            cursorclass=pymysql.cursors.DictCursor, 
            use_unicode=True,
        )
        # 指定擦做數據庫的模塊名和數據庫參數參數
        self.dbpool = adbapi.ConnectionPool("pymysql", **dbparms)

    # 使用twisted將mysql插入變成異步執(zhí)行
    def process_item(self, item, spider):
        query = self.dbpool.runInteraction(self.do_insert, item)
        query.addErrback(self.handle_error, item, spider) #處理異常
           
    #處理異步插入的異常  
    def handle_error(self, failure, item, spider):
        print (failure)
    
    #執(zhí)行具體的插入
    def do_insert(self, cursor, item): 
       
        #從item中導入
        title = item['title'][0]
        link = item['link']
        #price = item['price'][0]
        comment = item['comment'][0]
        now_price = item['now_price']
        address = item['address']
        sale = item['sale_count']
        brand=item['brand'][0]
        produce=item['produce'][0]
        effect = item['effect'][0]
              
        print('商品標題\t', title)
        print('商品鏈接\t', link)
        #print('商品原價\t', price)
        print('商品現價\t', now_price)
        print('商家地址\t', address)
        print('評論數量\t', comment)
        print('銷量\t', sale)
        print('品牌\t',brand)
        print('產地\t',produce)
        print('功效\t',effect)

        try:            
            sql="insert into taobaokh(title,link,comment,now_price,address,sale,brand,produce,effect) values(%s,%s,%s,%s,%s,%s,%s,%s,%s)"
            values=(title,link,comment,now_price,address,sale,brand,produce,effect)
            cursor.execute(sql,values)
            print('導入成功')
            print('------------------------------\n')
            return item
        except Exception as err:
            pass

運行爬蟲:

scrapy crawl tb --nolog
屏幕快照 2018-07-22 下午8.56.08.png

到此,爬蟲基本已經可以正常運轉起來了匀钧。

第三步 設置設置隨機User-Agent

目的是每次請求時通過更換不同的user-agent翎碑,可以更好地偽裝瀏覽器。

1.更新了源碼的ua列表(PC端)之斯,添加到settings.py最后
USER_AGENT_LIST = [ "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/603.2.4 (KHTML, like Gecko) Version/10.1.1 Safari/603.2.4",
    "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; WOW64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.1; WOW64; Trident/7.0; rv:11.0) like Gecko",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.79 Safari/537.36 Edge/14.14393",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.109 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/603.2.5 (KHTML, like Gecko) Version/10.1.1 Safari/603.2.5",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.104 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; rv:11.0) like Gecko",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/52.0.2743.116 Safari/537.36 Edge/15.15063",
    "Mozilla/5.0 (Windows NT 6.1) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.3; WOW64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Windows NT 6.3; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36",
    "Mozilla/5.0 (iPad; CPU OS 10_3_2 like Mac OS X) AppleWebKit/603.2.4 (KHTML, like Gecko) Version/10.0 Mobile/14F89 Safari/602.1",
    "Mozilla/5.0 (Windows NT 6.1; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; WOW64; rv:53.0) Gecko/20100101 Firefox/53.0",
    "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:53.0) Gecko/20100101 Firefox/53.0",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.11; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.109 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.109 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.104 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64; rv:52.0) Gecko/20100101 Firefox/52.0",
    "Mozilla/5.0 (Windows NT 6.1; Trident/7.0; rv:11.0) like Gecko",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_4) AppleWebKit/603.1.30 (KHTML, like Gecko) Version/10.1 Safari/603.1.30",
    "Mozilla/5.0 (Windows NT 6.1; Win64; x64; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 5.1; rv:52.0) Gecko/20100101 Firefox/52.0",
    "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.109 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:52.0) Gecko/20100101 Firefox/52.0",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/58.0.3029.110 Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_10_5) AppleWebKit/603.2.5 (KHTML, like Gecko) Version/10.1.1 Safari/603.2.5",
    "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.104 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.104 Safari/537.36",
    "Mozilla/5.0 (X11; Linux x86_64; rv:45.0) Gecko/20100101 Firefox/45.0",
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:53.0) Gecko/20100101 Firefox/53.0",
    "Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.86 Safari/537.36 OPR/46.0.2597.32",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Ubuntu Chromium/59.0.3071.109 Chrome/59.0.3071.109 Safari/537.36",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.12; rv:53.0) Gecko/20100101 Firefox/53.0",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/56.0.2924.87 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.3; WOW64; Trident/7.0; rv:11.0) like Gecko",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36 OPR/45.0.2552.898",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/58.0.3029.110 Safari/537.36",
    "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:40.0) Gecko/20100101 Firefox/40.1",
    "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36 OPR/46.0.2597.39",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:54.0) Gecko/20100101 Firefox/54.0",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6) AppleWebKit/601.7.7 (KHTML, like Gecko) Version/9.1.2 Safari/601.7.7",
    "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_12_3) AppleWebKit/602.4.8 (KHTML, like Gecko) Version/10.0.3 Safari/602.4.8",
    "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
    "Mozilla/5.0 (Windows NT 10.0; WOW64; Trident/7.0; Touch; rv:11.0) like Gecko",
    "Mozilla/5.0 (Windows NT 6.1; rv:52.0) Gecko/20100101 Firefox/52.0",
    "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/51.0.2704.106 Safari/537.36",
                   ]

DOWNLOADER_MIDDLEWARES = {
    'taobao.middlewares.ProcessHeaderMidware': 543,
}

github上有人專門寫了一個user-agent 的插件日杈,也可以直接調用,鏈接

2.在middlewares.py文件里添加如下代碼:
# encoding: utf-8
from scrapy.utils.project import get_project_settings
import random

settings = get_project_settings()

class ProcessHeaderMidware():
    """process request add request info"""

    def process_request(self, request, spider):
        """
        隨機從列表中獲得header佑刷, 并傳給user_agent進行使用
        """
        ua = random.choice(settings.get('USER_AGENT_LIST'))
        spider.logger.info(msg='now entring download midware')
        if ua:
            request.headers['User-Agent'] = ua
            # Add desired logging message here.
            spider.logger.info(u'User-Agent is : {} {}'.format(request.headers.get('User-Agent'), request))
        pass

設置完成莉擒。

第四步 使用Scrapy-redis實現分布式爬蟲

為了進一步提高效率和防反爬蟲能力,就要用到多進程和分布式爬蟲了瘫絮。
Scrapy-redis還有一個好處是支持斷點續(xù)傳涨冀,爬的過程中遇到過sracpy卡主住不動的情況,直接重新打開一個終端麦萤,輸入爬蟲指令鹿鳖,又繼續(xù)跑起來~

1. Scrapy-redis環(huán)境搭建:

需要分別安裝redis,scrapy-redis频鉴,和redis-py三個庫:
1)redis
直接使用conda install redis安裝(或pip install redis
2) scrapy-redis
由于anaconda中沒有scrapy-redis的安裝包栓辜,需要下載第三方zip安裝包,下載鏈接垛孔。安裝過程:cmd依次輸入

cd /Users/用戶名/Downloads
unzip scrapy-redis-master.zip -d/Users/用戶名/Downloads/ #解壓文件到指定路徑
cd scrapy-redis-master 
python setup.py install #安裝文件
password:***** #輸入密碼

如果不使用Anaconda坝冕,直接在終端pip install scrapy-redis應該也可以耕蝉。
3) redis-py
裝完redis之后叮贩,運行程序一直報錯"ImportError: No module named redis"关面,搜過之后發(fā)現是Python默認不支持Redis,需要安裝redis-py才能正常調用豌鹤。下載鏈接
安裝方法同上。

2.修改Scrapy項目文件

1)在settings.py中增加以下內容
SCHEDULER = "scrapy_redis.scheduler.Scheduler"  #啟用Redis調度存儲請求隊列
SCHEDULER_PERSIST = True    #不清除Redis隊列、這樣可以暫停/恢復 爬取
DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"  #確保所有的爬蟲通過Redis去重
SCHEDULER_QUEUE_CLASS = 'scrapy_redis.queue.SpiderPriorityQueue'
REDIS_HOST = '127.0.0.1'  # 也可以根據情況改成 localhost
REDIS_PORT = 6379
REDIS_URL = None
2)在items.py中增加以下內容
from scrapy.loader import ItemLoader
from scrapy.loader.processors import MapCompose, TakeFirst, Join

class TaobaoSpiderLoader(ItemLoader):
    default_item_class = TaobaoItem
    default_input_processor = MapCompose(lambda s: s.strip())
    default_output_processor = TakeFirst()
    description_out = Join()
3)對tb.py文件進行更改

import相關包:

from scrapy_redis.spiders import RedisSpider

修改TbSpider類:

class TbSpider(RedisSpider):
    name = 'tb'
    #allowed_domains = ['taobao.com']
    #start_urls = ['http://taobao.com/']
    redis_key = 'Taobao:start_urls'

配置完成默怨!

3. 運行分布式爬蟲

1)打開終端,啟動redis服務器redis-server

localhost:~ $ redis-server
3708:C 20 Jul 22:42:41.914 # oO0OoO0OoO0Oo Redis is starting oO0OoO0OoO0Oo
3708:C 20 Jul 22:42:41.915 # Redis version=4.0.10, bits=64, commit=00000000, modified=0, pid=3708, just started
3708:C 20 Jul 22:42:41.915 # Warning: no config file specified, using the default config. In order to specify a config file use redis-server /path/to/redis.conf
3708:M 20 Jul 22:42:41.916 * Increased maximum number of open files to 10032 (it was originally set to 256).
                _._                                                  
           _.-``__ ''-._                                             
      _.-``    `.  `_.  ''-._           Redis 4.0.10 (00000000/0) 64 bit
  .-`` .-```.  ```\/    _.,_ ''-._                                   
 (    '      ,       .-`  | `,    )     Running in standalone mode
 |`-._`-...-` __...-.``-._|'` _.-'|     Port: 6379
 |    `-._   `._    /     _.-'    |     PID: 3708
  `-._    `-._  `-./  _.-'    _.-'                                   
 |`-._`-._    `-.__.-'    _.-'_.-'|                                  
 |    `-._`-._        _.-'_.-'    |           http://redis.io        
  `-._    `-._`-.__.-'_.-'    _.-'                                   
 |`-._`-._    `-.__.-'    _.-'_.-'|                                  
 |    `-._`-._        _.-'_.-'    |                                  
  `-._    `-._`-.__.-'_.-'    _.-'                                   
      `-._    `-.__.-'    _.-'                                       
          `-._        _.-'                                           
              `-.__.-'                                               

3708:M 20 Jul 22:42:41.920 # Server initialized
3708:M 20 Jul 22:42:41.920 * DB loaded from disk: 0.000 seconds
3708:M 20 Jul 22:42:41.920 * Ready to accept connections

看到這個界面就證明服務器開啟骤素,關掉窗口匙睹。

2)打開一個新的終端,運行爬蟲:

scrapy crawl tb --nolog

此時爬蟲處于等待狀態(tài)济竹,需要設置start_url痕檬。

3)再打開一個新的終端,輸入:

redis-cli
127.0.0.1:6379>LPUSH Taobao:start_urls http://taobao.com
(integer) 1 

返回(integer) 1 則表示設置成功送浊。(指令中的Taobao:start_urls對應tb.py文件中的設置redis_key = 'Taobao:start_urls'

4)此時梦谜,爬蟲開始運行....MacOS不會像windows一樣,彈出多個終端袭景,只在一個終端里跑唁桩,但明顯速度加快了好多。

5)如果要中途停止爬蟲耸棒,按ctrl+c荒澡。
停止后再輸入 scrapy crawl taobao –nolog 運行的話,程序會斷點續(xù)傳榆纽,原因是在setting.py中設置了 SCHEDULER_PERSIST = True 仰猖。
如果想取消這個功能,要把True改為False奈籽。

6)爬取完畢后饥侵,要清除redis緩存

127.0.0.1:6379>flushdb
ok

完畢!

總結:

通過Python3.6和scrapy構建了一個淘寶商品的爬蟲衣屏,通過scrapy-redis實現了分布式爬蟲躏升,最后用MySQL來存儲數據。


問題

  • tmall鏈接下的商品原價格一直抓取失敗狼忱,xpath在xpath finder驗證可行膨疏,運行后一直是空值,猜測可能是網頁有異步加載钻弄,待研究佃却。
  • tmall鏈接抓取過程中,很多鏈接進行了重定向(301窘俺、302)導致數據無法抓取饲帅,應該是跳轉登錄之類的反爬措施。

(聲明:此文章僅作為學習交流,不做為其它用途)

最后編輯于
?著作權歸作者所有,轉載或內容合作請聯(lián)系作者
  • 序言:七十年代末灶泵,一起剝皮案震驚了整個濱河市育八,隨后出現的幾起案子,更是在濱河造成了極大的恐慌赦邻,老刑警劉巖髓棋,帶你破解...
    沈念sama閱讀 212,454評論 6 493
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現場離奇詭異惶洲,居然都是意外死亡按声,警方通過查閱死者的電腦和手機,發(fā)現死者居然都...
    沈念sama閱讀 90,553評論 3 385
  • 文/潘曉璐 我一進店門湃鹊,熙熙樓的掌柜王于貴愁眉苦臉地迎上來儒喊,“玉大人,你說我怎么就攤上這事币呵。” “怎么了侨颈?”我有些...
    開封第一講書人閱讀 157,921評論 0 348
  • 文/不壞的土叔 我叫張陵余赢,是天一觀的道長。 經常有香客問我哈垢,道長妻柒,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 56,648評論 1 284
  • 正文 為了忘掉前任耘分,我火速辦了婚禮举塔,結果婚禮上,老公的妹妹穿的比我還像新娘求泰。我一直安慰自己央渣,他們只是感情好,可當我...
    茶點故事閱讀 65,770評論 6 386
  • 文/花漫 我一把揭開白布渴频。 她就那樣靜靜地躺著芽丹,像睡著了一般。 火紅的嫁衣襯著肌膚如雪卜朗。 梳的紋絲不亂的頭發(fā)上拔第,一...
    開封第一講書人閱讀 49,950評論 1 291
  • 那天,我揣著相機與錄音场钉,去河邊找鬼蚊俺。 笑死,一個胖子當著我的面吹牛逛万,可吹牛的內容都是我干的泳猬。 我是一名探鬼主播,決...
    沈念sama閱讀 39,090評論 3 410
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場噩夢啊……” “哼暂殖!你這毒婦竟也來了价匠?” 一聲冷哼從身側響起,我...
    開封第一講書人閱讀 37,817評論 0 268
  • 序言:老撾萬榮一對情侶失蹤呛每,失蹤者是張志新(化名)和其女友劉穎踩窖,沒想到半個月后,有當地人在樹林里發(fā)現了一具尸體晨横,經...
    沈念sama閱讀 44,275評論 1 303
  • 正文 獨居荒郊野嶺守林人離奇死亡洋腮,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內容為張勛視角 年9月15日...
    茶點故事閱讀 36,592評論 2 327
  • 正文 我和宋清朗相戀三年,在試婚紗的時候發(fā)現自己被綠了手形。 大學時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片啥供。...
    茶點故事閱讀 38,724評論 1 341
  • 序言:一個原本活蹦亂跳的男人離奇死亡,死狀恐怖库糠,靈堂內的尸體忽然破棺而出伙狐,到底是詐尸還是另有隱情,我是刑警寧澤瞬欧,帶...
    沈念sama閱讀 34,409評論 4 333
  • 正文 年R本政府宣布贷屎,位于F島的核電站,受9級特大地震影響艘虎,放射性物質發(fā)生泄漏唉侄。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點故事閱讀 40,052評論 3 316
  • 文/蒙蒙 一野建、第九天 我趴在偏房一處隱蔽的房頂上張望属划。 院中可真熱鬧,春花似錦候生、人聲如沸同眯。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,815評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽嗽测。三九已至,卻和暖如春肿孵,著一層夾襖步出監(jiān)牢的瞬間唠粥,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 32,043評論 1 266
  • 我被黑心中介騙來泰國打工停做, 沒想到剛下飛機就差點兒被人妖公主榨干…… 1. 我叫王不留晤愧,地道東北人。 一個月前我還...
    沈念sama閱讀 46,503評論 2 361
  • 正文 我出身青樓蛉腌,卻偏偏與公主長得像官份,于是被迫代替她去往敵國和親只厘。 傳聞我的和親對象是個殘疾皇子,可洞房花燭夜當晚...
    茶點故事閱讀 43,627評論 2 350

推薦閱讀更多精彩內容

  • 目錄 前言 安裝環(huán)境Debian / Ubuntu / Deepin 下安裝Windows 下安裝 基本使用初始化...
    無口會咬人閱讀 7,494評論 2 45
  • Scrapy舅巷,Python開發(fā)的一個快速,高層次的屏幕抓取和web抓取框架羔味,用于抓取web站點并從頁面中提取結構化...
    Evtion閱讀 5,839評論 12 18
  • # Python 資源大全中文版 我想很多程序員應該記得 GitHub 上有一個 Awesome - XXX 系列...
    小邁克閱讀 2,965評論 1 3
  • 本月讀書 6 本。 《完全犯罪》钠右,艱澀難讀赋元,耗費腦細胞,讀完不知所云飒房,以后看到小栗蟲太郎這個名字還是慎重吧搁凸。★★ ...
    loveisbug閱讀 211評論 0 1
  • 這個國慶長假期間狠毯,我和爸爸媽媽一起去看了护糖,大英博物館100件、濃縮的歷史嚼松,前一天告訴我要去上旱樟迹看展覽,要...
    Winter路閱讀 383評論 1 3