1泻帮、概念
窗口分析函數(shù):窗口函數(shù)也稱為OLAP(OnlineAnalytical Processing)函數(shù),是對一組值進(jìn)行操作返十,不需要使用Group by子句對數(shù)據(jù)進(jìn)行分組,還能在同一行返回原來行的列和使用聚合函數(shù)得到的聚合列。
官網(wǎng):
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+WindowingAndAnalytics
2雹锣、sum, avg, max, min
數(shù)據(jù)準(zhǔn)備:cookie.txt
cookie1,2015-04-10,1
cookie1,2015-04-11,5
cookie1,2015-04-12,7
cookie1,2015-04-13,3
cookie1,2015-04-14,2
cookie1,2015-04-15,4
cookie1,2015-04-16,4
建表準(zhǔn)備相關(guān):
create database if not exists myhive;
use myhive;
drop table if exists cookie;
create table cookie(cookieid string, createtime string, pv int) row format
delimited fields terminated by ',';
load data local inpath "/home/bigdata/cookie.txt" into table cookie;
select * from cookie;
sum
SELECT cookieid,createtime,pv,
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime) AS pv1, -- 默認(rèn)為從起點(diǎn)到
當(dāng)前行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN UNBOUNDED
PRECEDING AND CURRENT ROW) AS pv2, --從起點(diǎn)到當(dāng)前行,結(jié)果同pv1
SUM(pv) OVER(PARTITION BY cookieid) AS pv3, --分組內(nèi)所有行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING
AND CURRENT ROW) AS pv4, --當(dāng)前行+往前3行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3 PRECEDING
AND 1 FOLLOWING) AS pv5, --當(dāng)前行+往前3行+往后1行
SUM(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN CURRENT ROW
AND UNBOUNDED FOLLOWING) AS pv6 --當(dāng)前行+往后所有行
FROM cookie order by cookieid, createtime;
結(jié)果:
cookie1 2015-04-10 1 1 1 26 1 6 26
cookie1 2015-04-11 5 6 6 26 6 13 25
cookie1 2015-04-12 7 13 13 26 13 16 20
cookie1 2015-04-13 3 16 16 26 16 18 13
cookie1 2015-04-14 2 18 18 26 17 21 10
cookie1 2015-04-15 4 22 22 26 16 20 8
cookie1 2015-04-16 4 26 26 26 13 13 4
解釋:
pv1: 分組內(nèi)從起點(diǎn)到當(dāng)前行的pv累積癞蚕,如蕊爵,11號的pv1=10號的pv+11號的pv, 12號=10號+11號+12號
pv2: 同pv1
pv3: 分組內(nèi)(cookie1)所有的pv累加
pv4: 分組內(nèi)當(dāng)前行+往前3行,11號=10號+11號桦山, 12號=10號+11號+12號攒射, 13號=10號+11號+12號+13號, 14號=11號+12號+13號+14號
pv5: 分組內(nèi)當(dāng)前行+往前3行+往后1行恒水,如会放,14號=11號+12號+13號+14號+15號=5+7+3+2+4=21
pv6: 分組內(nèi)當(dāng)前行+往后所有行,如钉凌,13號=13號+14號+15號+16號=3+2+4+4=13咧最,14號=14號+15號+16號=2+4+4=10
擴(kuò)展:
如果不指定ROWS BETWEEN,默認(rèn)為從起點(diǎn)到當(dāng)前行;
如果不指定ORDER BY,則將分組內(nèi)所有值累加;
關(guān)鍵是理解ROWS BETWEEN含義,也叫做WINDOW子句:
PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:當(dāng)前行
UNBOUNDED:起點(diǎn)御雕,UNBOUNDED PRECEDING 表示從前面的起點(diǎn)矢沿, UNBOUNDED FOLLOWING:表示到后面的終點(diǎn)
avg,min酸纲,max捣鲸,和 sum
其他AVG,MIN闽坡,MAX栽惶,和SUM用法一樣。只需要把sum函數(shù)疾嗅,改成avg外厂,min,max宪迟,sum等就可以酣衷。
SELECT cookieid, createtime, pv,
round(AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime), 2) AS pv1, --默
認(rèn)為從起點(diǎn)到當(dāng)前行
round(AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW), 2) AS pv2, --從起點(diǎn)到當(dāng)前行,結(jié)果同pv1
round(AVG(pv) OVER(PARTITION BY cookieid), 2) AS pv3, --分組內(nèi)所有行
round(AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3
PRECEDING AND CURRENT ROW), 2) AS pv4, --當(dāng)前行+往前3行
round(AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN 3
PRECEDING AND 1 FOLLOWING), 2) AS pv5, --當(dāng)前行+往前3行+往后1行
round(AVG(pv) OVER(PARTITION BY cookieid ORDER BY createtime ROWS BETWEEN
CURRENT ROW AND UNBOUNDED FOLLOWING), 2) AS pv6 --當(dāng)前行+往后所有行
FROM cookie;
執(zhí)行結(jié)果:
cookie1 2015-04-16 4 3.71 3.71 3.71 3.25 3.25 4.0
cookie1 2015-04-15 4 3.67 3.67 3.71 4.0 4.0 4.0
cookie1 2015-04-14 2 3.6 3.6 3.71 4.25 4.2 3.33
cookie1 2015-04-13 3 4.0 4.0 3.71 4.0 3.6 3.25
cookie1 2015-04-12 7 4.33 4.33 3.71 4.33 4.0 4.0
cookie1 2015-04-11 5 3.0 3.0 3.71 3.0 4.33 4.17
cookie1 2015-04-10 1 1.0 1.0 3.71 1.0 3.0 3.71
3次泽、ntile, row_number, rank, dense_rank
準(zhǔn)備數(shù)據(jù):cookie2.txt
cookie1,2015-04-10,1
cookie1,2015-04-11,5
cookie1,2015-04-12,7
cookie1,2015-04-13,3
cookie1,2015-04-14,2
cookie1,2015-04-15,4
cookie1,2015-04-16,4
cookie2,2015-04-10,2
cookie2,2015-04-11,3
cookie2,2015-04-12,5
cookie2,2015-04-13,6
cookie2,2015-04-14,3
cookie2,2015-04-15,9
cookie2,2015-04-16,7
建表導(dǎo)入數(shù)據(jù)相關(guān)操作:
create database if not exists myhive;
use myhive;
drop table if exists cookie2;
create table cookie2(cookieid string, createtime string, pv int) row format
delimited fields terminated by ',';
load data local inpath "/home/bigdata/cookie2.txt" into table cookie2;
select * from cookie2;
ntile
NTILE(n)穿仪,用于將分組數(shù)據(jù)按照順序切分成n片,返回當(dāng)前切片值
NTILE不支持ROWS BETWEEN意荤,比如 NTILE(2) OVER(PARTITION BY cookieid ORDER BY
createtime ROWS BETWEEN 3 PRECEDING AND CURRENT ROW)
如果切片不均勻啊片,默認(rèn)增加第一個切片的分布
SQL語句實例:
SELECT cookieid,createtime,pv,
NTILE(2) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn1, --分組內(nèi)將數(shù)據(jù)
分成2片
NTILE(3) OVER(PARTITION BY cookieid ORDER BY createtime) AS rn2, --分組內(nèi)將數(shù)據(jù)
分成3片
NTILE(4) OVER(ORDER BY createtime) AS rn3 --將所有數(shù)據(jù)分成4片
FROM cookie2
ORDER BY cookieid,createtime;
結(jié)果:
cookie1 2015-04-10 1 1 1 1
cookie1 2015-04-11 5 1 1 1
cookie1 2015-04-12 7 1 1 2
cookie1 2015-04-13 3 1 2 2
cookie1 2015-04-14 2 2 2 3
cookie1 2015-04-15 4 2 3 4
cookie1 2015-04-16 4 2 3 4
cookie2 2015-04-10 2 1 1 1
cookie2 2015-04-11 3 1 1 1
cookie2 2015-04-12 5 1 1 2
cookie2 2015-04-13 6 1 2 2
cookie2 2015-04-14 3 2 2 3
cookie2 2015-04-15 9 2 3 3
cookie2 2015-04-16 7 2 3 4
比如,統(tǒng)計一個cookie玖像,pv數(shù)最多的前1/3的天
SELECT cookieid, createtime, pv,
NTILE(3) OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn
FROM cookie2;
結(jié)果:
cookie1 2015-04-12 7 1
cookie1 2015-04-11 5 1
cookie1 2015-04-16 4 1
cookie1 2015-04-15 4 2
cookie1 2015-04-13 3 2
cookie1 2015-04-14 2 3
cookie1 2015-04-10 1 3
cookie2 2015-04-15 9 1
cookie2 2015-04-16 7 1
cookie2 2015-04-13 6 1
cookie2 2015-04-12 5 2
cookie2 2015-04-11 3 2
cookie2 2015-04-14 3 3
cookie2 2015-04-10 2 3
其中:rn = 1 的記錄紫谷,就是我們想要的結(jié)果
row_number
ROW_NUMBER() – 從1開始,按照順序,生成分組內(nèi)記錄的序列 –比如笤昨,按照pv降序排列祖驱,生成分組內(nèi)每天的pv名次,ROW_NUMBER() 的應(yīng)用場景非常多瞒窒,再比如捺僻,獲取分組內(nèi)排序第一的記錄;獲取一個session中的第一條refer等。
// 分組排序
SELECT cookieid, createtime, pv,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn
FROM cookie2;
結(jié)果:
cookie1 2015-04-12 7 1
cookie1 2015-04-11 5 2
cookie1 2015-04-16 4 3
cookie1 2015-04-15 4 4
cookie1 2015-04-13 3 5
cookie1 2015-04-14 2 6
cookie1 2015-04-10 1 7
cookie2 2015-04-15 9 1
cookie2 2015-04-16 7 2
cookie2 2015-04-13 6 3
cookie2 2015-04-12 5 4
cookie2 2015-04-11 3 5
cookie2 2015-04-14 3 6
cookie2 2015-04-10 2 7
所以如果需要取每一組的前3名崇裁,只需要rn<=3即可
rank 和 dense_rank
RANK() 生成數(shù)據(jù)項在分組中的排名匕坯,排名相等會在名次中留下空位
DENSE_RANK() 生成數(shù)據(jù)項在分組中的排名,排名相等會在名次中不會留下空位
SQL語句實例:
SELECT cookieid, createtime, pv,
RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn1,
DENSE_RANK() OVER(PARTITION BY cookieid ORDER BY pv desc) AS rn2,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY pv DESC) AS rn3
FROM cookie2
WHERE cookieid = 'cookie1';
結(jié)果:
cookie1 2015-04-12 7 1 1 1
cookie1 2015-04-11 5 2 2 2
cookie1 2015-04-16 4 3 3 3
cookie1 2015-04-15 4 3 3 4
cookie1 2015-04-13 3 5 4 5
cookie1 2015-04-14 2 6 5 6
cookie1 2015-04-10 1 7 6 7
三者對比總結(jié):
row_number 按順序編號拔稳,不留空位
rank 按順序編號葛峻,相同的值編相同號,留空位
dense_rank 按順序編號巴比,相同的值編相同的號术奖,不留空位
4、cume_dist, percent_rank
數(shù)據(jù)準(zhǔn)備:cookie3.txt
d1,user1,1000
d1,user2,2000
d1,user3,3000
d2,user4,4000
d2,user5,5000
建表導(dǎo)入數(shù)據(jù)相關(guān)操作:
create database if not exists myhive;
use myhive;
drop table if exists cookie3;
create table cookie3(dept string, userid string, sal int) row format delimited
fields terminated by ',';
load data local inpath "/home/bigdata/cookie3.txt" into table cookie3;
select * from cookie3;
cume_dist
–CUME_DIST 小于等于當(dāng)前值的行數(shù)/分組內(nèi)總行數(shù)
比如匿辩,統(tǒng)計小于等于當(dāng)前薪水的人數(shù)腰耙,所占總?cè)藬?shù)的比例
SELECT dept, userid, sal,
round(CUME_DIST() OVER(ORDER BY sal), 2) AS rn1,
round(CUME_DIST() OVER(PARTITION BY dept ORDER BY sal), 2) AS rn2
FROM cookie3;
結(jié)果:
d1 user1 1000 0.2 0.33
d1 user2 2000 0.4 0.67
d1 user3 3000 0.6 1.0
d2 user4 4000 0.8 0.5
d2 user5 5000 1.0 1.0
SQL語句實例:
SELECT dept, userid, sal,
round(CUME_DIST() OVER(ORDER BY sal), 2) AS rn1,
round(CUME_DIST() OVER(PARTITION BY dept ORDER BY sal desc), 2) AS rn2
FROM cookie3;
結(jié)果:
d1 user3 3000 0.6 0.33
d1 user2 2000 0.4 0.67
d1 user1 1000 0.2 1.0
d2 user5 5000 1.0 0.5
d2 user4 4000 0.8 1.0
percent_rank
PERCENT_RANK 分組內(nèi)當(dāng)前行的RANK值-1/分組內(nèi)總行數(shù)-1
SQL語句實例:
SELECT dept, userid, sal,
PERCENT_RANK() OVER(ORDER BY sal) AS rn1, --分組內(nèi)
RANK() OVER(ORDER BY sal) AS rn11, --分組內(nèi)RANK值
SUM(1) OVER(PARTITION BY NULL) AS rn12, --分組內(nèi)總行數(shù)
PERCENT_RANK() OVER(PARTITION BY dept ORDER BY sal) AS rn2
FROM cookie3;
結(jié)果:
d1 user1 1000 0.0 1 5 0.0
d1 user2 2000 0.25 2 5 0.5
d1 user3 3000 0.5 3 5 1.0
d2 user4 4000 0.75 4 5 0.0
d2 user5 5000 1.0 5 5 1.0
SQL語句實例:
SELECT dept, userid, sal,
PERCENT_RANK() OVER(PARTITION BY dept ORDER BY sal) AS rn1, --分組內(nèi)
RANK() OVER(ORDER BY sal) AS rn11, --分組內(nèi)RANK值
SUM(1) OVER(PARTITION BY NULL) AS rn12, --分組內(nèi)總行數(shù)
PERCENT_RANK() OVER(PARTITION BY dept ORDER BY sal) AS rn2
FROM cookie3;
執(zhí)行結(jié)果:
d2 user5 5000 1.0 5 5 1.0
d2 user4 4000 0.0 4 5 0.0
d1 user3 3000 1.0 3 5 1.0
d1 user2 2000 0.5 2 5 0.5
d1 user1 1000 0.0 1 5 0.0
5、lag, lead, frist_value, last_value
數(shù)據(jù)準(zhǔn)備:cookie4.txt
cookie1,2015-04-10 10:00:02,url2
cookie1,2015-04-10 10:00:00,url1
cookie1,2015-04-10 10:03:04,1url3
cookie1,2015-04-10 10:50:05,url6
cookie1,2015-04-10 11:00:00,url7
cookie1,2015-04-10 10:10:00,url4
cookie1,2015-04-10 10:50:01,url5
cookie2,2015-04-10 10:00:02,url22
cookie2,2015-04-10 10:00:00,url11
cookie2,2015-04-10 10:03:04,1url33
cookie2,2015-04-10 10:50:05,url66
cookie2,2015-04-10 11:00:00,url77
cookie2,2015-04-10 10:10:00,url44
cookie2,2015-04-10 10:50:01,url55
建表導(dǎo)入數(shù)據(jù)相關(guān)操作:
create database if not exists myhive;
use myhive;
drop table if exists cookie4;
create table cookie4(cookieid string, createtime string, url string) row format
delimited fields terminated by ',';
load data local inpath "/home/bigdata/cookie4.txt" into table cookie4;
select * from cookie4;
lag
LAG(col,n,DEFAULT) 用于統(tǒng)計窗口內(nèi)往上第n行值
第一個參數(shù)為列名铲球,
第二個參數(shù)為往上第n行(可選挺庞,默認(rèn)為1),
第三個參數(shù)為默認(rèn)值(當(dāng)往上第n行為NULL時候稼病,取默認(rèn)值选侨,如不指定,則為NULL)
SQL語句實例:
SELECT cookieid, createtime, url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAG(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY
createtime) AS last_1_time,
LAG(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS last_2_time
FROM cookie4;
結(jié)果數(shù)據(jù):
cookieid createtime url rn last_1_time
last_2_time
cookie1 2015-04-10 10:00:00 url1 1 1970-01-01 00:00:00 NULL
cookie1 2015-04-10 10:00:02 url2 2 2015-04-10 10:00:00 NULL
cookie1 2015-04-10 10:03:04 1url3 3 2015-04-10 10:00:02 2015-04-10 10:00:00
cookie1 2015-04-10 10:10:00 url4 4 2015-04-10 10:03:04 2015-04-10 10:00:02
cookie1 2015-04-10 10:50:01 url5 5 2015-04-10 10:10:00 2015-04-10 10:03:04
cookie1 2015-04-10 10:50:05 url6 6 2015-04-10 10:50:01 2015-04-10 10:10:00
cookie1 2015-04-10 11:00:00 url7 7 2015-04-10 10:50:05 2015-04-10 10:50:01
cookie2 2015-04-10 10:00:00 url11 1 1970-01-01 00:00:00 NULL
cookie2 2015-04-10 10:00:02 url22 2 2015-04-10 10:00:00 NULL
cookie2 2015-04-10 10:03:04 1url33 3 2015-04-10 10:00:02 2015-04-10 10:00:00
cookie2 2015-04-10 10:10:00 url44 4 2015-04-10 10:03:04 2015-04-10 10:00:02
cookie2 2015-04-10 10:50:01 url55 5 2015-04-10 10:10:00 2015-04-10 10:03:04
cookie2 2015-04-10 10:50:05 url66 6 2015-04-10 10:50:01 2015-04-10 10:10:00
cookie2 2015-04-10 11:00:00 url77 7 2015-04-10 10:50:05 2015-04-10 10:50:01
解釋:
last_1_time: 指定了往上第1行的值然走,default為'1970-01-01 00:00:00'
cookie1第一行援制,往上1行為NULL,因此取默認(rèn)值 1970-01-01 00:00:00
cookie1第三行,往上1行值為第二行值芍瑞,2015-04-10 10:00:02
cookie1第六行晨仑,往上1行值為第五行值,2015-04-10 10:50:01
last_2_time: 指定了往上第2行的值拆檬,為指定默認(rèn)值
cookie1第一行洪己,往上2行為NULL
cookie1第二行,往上2行為NULL
cookie1第四行,往上2行為第二行值,2015-04-10 10:00:02
cookie1第七行总处,往上2行為第五行值,2015-04-10 10:50:01
lead
與LAG相反
LEAD(col,n,DEFAULT) 用于統(tǒng)計窗口內(nèi)往下第n行值
第一個參數(shù)為列名昔逗,
第二個參數(shù)為往下第n行(可選关霸,默認(rèn)為1)梨熙,
第三個參數(shù)為默認(rèn)值(當(dāng)往下第n行為NULL時候突想,取默認(rèn)值沃琅,如不指定哗咆,則為NULL)
SQL語句實例:
SELECT cookieid, createtime, url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LEAD(createtime,1,'1970-01-01 00:00:00') OVER(PARTITION BY cookieid ORDER BY
createtime) AS next_1_time,
LEAD(createtime,2) OVER(PARTITION BY cookieid ORDER BY createtime) AS
next_2_time
FROM cookie4;
結(jié)果:
cookieid createtime url rn next_1_time
next_2_time
cookie1 2015-04-10 10:00:00 url1 1 2015-04-10 10:00:02 2015-04-
10 10:03:04
cookie1 2015-04-10 10:00:02 url2 2 2015-04-10 10:03:04 2015-04-
10 10:10:00
cookie1 2015-04-10 10:03:04 1url3 3 2015-04-10 10:10:00 2015-04-
10 10:50:01
cookie1 2015-04-10 10:10:00 url4 4 2015-04-10 10:50:01 2015-04-
10 10:50:05
cookie1 2015-04-10 10:50:01 url5 5 2015-04-10 10:50:05 2015-04-
10 11:00:00
cookie1 2015-04-10 10:50:05 url6 6 2015-04-10 11:00:00 NULL
cookie1 2015-04-10 11:00:00 url7 7 1970-01-01 00:00:00 NULL
cookie2 2015-04-10 10:00:00 url11 1 2015-04-10 10:00:02 2015-04-
10 10:03:04
cookie2 2015-04-10 10:00:02 url22 2 2015-04-10 10:03:04 2015-04-
10 10:10:00
cookie2 2015-04-10 10:03:04 1url33 3 2015-04-10 10:10:00 2015-04-
10 10:50:01
cookie2 2015-04-10 10:10:00 url44 4 2015-04-10 10:50:01 2015-04-
10 10:50:05
cookie2 2015-04-10 10:50:01 url55 5 2015-04-10 10:50:05 2015-04-
10 11:00:00
cookie2 2015-04-10 10:50:05 url66 6 2015-04-10 11:00:00 NULL
cookie2 2015-04-10 11:00:00 url77 7 1970-01-01 00:00:00 NULL
first_value
取分組內(nèi)排序后,截止到當(dāng)前行阵难,第一個值
SQL語句實例:
SELECT cookieid, createtime, url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS first1
FROM cookie4;
結(jié)果:
cookie1 2015-04-10 10:00:00 url1 1 url1
cookie1 2015-04-10 10:00:02 url2 2 url1
cookie1 2015-04-10 10:03:04 1url3 3 url1
cookie1 2015-04-10 10:10:00 url4 4 url1
cookie1 2015-04-10 10:50:01 url5 5 url1
cookie1 2015-04-10 10:50:05 url6 6 url1
cookie1 2015-04-10 11:00:00 url7 7 url1
cookie2 2015-04-10 10:00:00 url11 1 url11
cookie2 2015-04-10 10:00:02 url22 2 url11
cookie2 2015-04-10 10:03:04 1url33 3 url11
cookie2 2015-04-10 10:10:00 url44 4 url11
cookie2 2015-04-10 10:50:01 url55 5 url11
cookie2 2015-04-10 10:50:05 url66 6 url11
cookie2 2015-04-10 11:00:00 url77 7 url11
last_value
取分組內(nèi)排序后岳枷,截止到當(dāng)前行芒填,最后一個值
SQL語句實例:
SELECT cookieid, createtime, url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1
FROM cookie4;
結(jié)果數(shù)據(jù):
cookie1 2015-04-10 10:00:00 url1 1 url1
cookie1 2015-04-10 10:00:02 url2 2 url2
cookie1 2015-04-10 10:03:04 1url3 3 1url3
cookie1 2015-04-10 10:10:00 url4 4 url4
cookie1 2015-04-10 10:50:01 url5 5 url5
cookie1 2015-04-10 10:50:05 url6 6 url6
cookie1 2015-04-10 11:00:00 url7 7 url7
cookie2 2015-04-10 10:00:00 url11 1 url11
cookie2 2015-04-10 10:00:02 url22 2 url22
cookie2 2015-04-10 10:03:04 1url33 3 1url33
cookie2 2015-04-10 10:10:00 url44 4 url44
cookie2 2015-04-10 10:50:01 url55 5 url55
cookie2 2015-04-10 10:50:05 url66 6 url66
cookie2 2015-04-10 11:00:00 url77 7 url77
問題:如果不指定ORDER BY呜叫,則默認(rèn)按照記錄在文件中的偏移量進(jìn)行排序,會出現(xiàn)錯誤的結(jié)果
// 求得每組的最后一個值: 排倒序殿衰,然后取FIRST_VALUE
SQL語句:
SELECT cookieid, createtime, url,
ROW_NUMBER() OVER(PARTITION BY cookieid ORDER BY createtime) AS rn,
LAST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime) AS last1,
FIRST_VALUE(url) OVER(PARTITION BY cookieid ORDER BY createtime DESC) AS
last2
FROM cookie4
ORDER BY cookieid,createtime;
結(jié)果:
cookie1 2015-04-10 10:00:00 url1 1 url1 url7
cookie1 2015-04-10 10:00:02 url2 2 url2 url7
cookie1 2015-04-10 10:03:04 1url3 3 1url3 url7
cookie1 2015-04-10 10:10:00 url4 4 url4 url7
cookie1 2015-04-10 10:50:01 url5 5 url5 url7
cookie1 2015-04-10 10:50:05 url6 6 url6 url7
cookie1 2015-04-10 11:00:00 url7 7 url7 url7
cookie2 2015-04-10 10:00:00 url11 1 url11 url77
cookie2 2015-04-10 10:00:02 url22 2 url22 url77
cookie2 2015-04-10 10:03:04 1url33 3 1url33 url77
cookie2 2015-04-10 10:10:00 url44 4 url44 url77
cookie2 2015-04-10 10:50:01 url55 5 url55 url77
cookie2 2015-04-10 10:50:05 url66 6 url66 url77
cookie2 2015-04-10 11:00:00 url77 7 url77 url77
6朱庆、 grouping sets, grouping__id, cube,rollup
這幾個分析函數(shù)通常用于OLAP中,不能累加闷祥,而且需要根據(jù)不同維度上鉆和下鉆的指標(biāo)統(tǒng)計娱颊,比如,分小時凯砍、天箱硕、月的UV數(shù)
官網(wǎng)介紹:https://cwiki.apache.org/confluence/display/Hive/Enhanced+Aggregation%2C+Cube%2
C+Grouping+and+Rollup
數(shù)據(jù)準(zhǔn)備:cookie5.txt
2015-03,2015-03-10,cookie1
2015-03,2015-03-10,cookie5
2015-03,2015-03-12,cookie7
2015-04,2015-04-12,cookie3
2015-04,2015-04-13,cookie2
2015-04,2015-04-13,cookie4
2015-04,2015-04-16,cookie4
2015-03,2015-03-10,cookie2
2015-03,2015-03-10,cookie3
2015-04,2015-04-12,cookie5
2015-04,2015-04-13,cookie6
2015-04,2015-04-15,cookie3
2015-04,2015-04-15,cookie2
2015-04,2015-04-16,cookie1
建表導(dǎo)入數(shù)據(jù)相關(guān):
create database if not exists myhive;
use myhive;
drop table if exists cookie5;
create table cookie5(month string, day string, cookieid string) row format
delimited fields terminated by ',';
load data local inpath "/home/bigdata/cookie5.txt" into table cookie5;
select * from cookie5;
grouping sets
在一個GROUP BY查詢中,根據(jù)不同的維度組合進(jìn)行聚合悟衩,等價于將不同維度的GROUP BY結(jié)果集進(jìn)行UNION ALL
SQL語句實例:
SELECT month, day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM cookie5
GROUP BY month,day
GROUPING SETS (month,day)
ORDER BY GROUPING__ID;
其中的 GROUPING__ID剧罩,表示結(jié)果屬于哪一個分組集合。
結(jié)果:
2015-04 NULL 6 1
2015-03 NULL 5 1
NULL 2015-04-16 2 2
NULL 2015-04-15 2 2
NULL 2015-04-13 3 2
NULL 2015-04-12 2 2
NULL 2015-03-12 1 2
NULL 2015-03-10 4 2
其實這個SQL語句等價于下面這個SQL:
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5
GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5
GROUP BY day;
執(zhí)行結(jié)果:
NULL 2015-03-10 4 2
NULL 2015-03-12 1 2
NULL 2015-04-12 2 2
NULL 2015-04-13 3 2
NULL 2015-04-15 2 2
NULL 2015-04-16 2 2
2015-03 NULL 5 1
2015-04 NULL 6 1
SQL語句:
SELECT month, day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM cookie5
GROUP BY month,day
GROUPING SETS (month,day,(month,day))
ORDER BY GROUPING__ID;
其中的 GROUPING__ID座泳,表示結(jié)果屬于哪一個分組集合惠昔。
結(jié)果數(shù)據(jù):
2015-03 2015-03-10 4 0
2015-04 2015-04-16 2 0
2015-04 2015-04-13 3 0
2015-04 2015-04-12 2 0
2015-04 2015-04-15 2 0
2015-03 2015-03-12 1 0
2015-03 NULL 5 1
2015-04 NULL 6 1
NULL 2015-04-16 2 2
NULL 2015-04-15 2 2
NULL 2015-04-13 3 2
NULL 2015-04-12 2 2
NULL 2015-03-12 1 2
NULL 2015-03-10 4 2
等價于:
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5
GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5
GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5
GROUP BY month,day;
cube
根據(jù)GROUP BY的維度的所有組合進(jìn)行聚合
SQL語句:
SELECT month, day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM cookie5
GROUP BY month,day
WITH CUBE
ORDER BY GROUPING__ID;
結(jié)果:
2015-03 2015-03-10 4 0
2015-04 2015-04-16 2 0
2015-04 2015-04-13 3 0
2015-04 2015-04-12 2 0
2015-04 2015-04-15 2 0
2015-03 2015-03-12 1 0
2015-03 NULL 5 1
2015-04 NULL 6 1
NULL 2015-04-16 2 2
NULL 2015-04-15 2 2
NULL 2015-04-13 3 2
NULL 2015-04-12 2 2
NULL 2015-03-12 1 2
NULL 2015-03-10 4 2
NULL NULL 7 3
等價于:
SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM cookie5
UNION ALL
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5
GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5
GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5
GROUP BY month,day;
rollup
是CUBE的子集,以最左側(cè)的維度為主挑势,從該維度進(jìn)行層級聚合
比如镇防,以month維度進(jìn)行層級聚合,SQL語句:
SELECT month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID
FROM cookie5
GROUP BY month,day WITH ROLLUP ORDER BY GROUPING__ID;
可以實現(xiàn)這樣的上鉆過程:月天的UV->月的UV->總UV
結(jié)果:
2015-04 2015-04-16 2 0
2015-04 2015-04-15 2 0
2015-04 2015-04-13 3 0
2015-04 2015-04-12 2 0
2015-03 2015-03-12 1 0
2015-03 2015-03-10 4 0
2015-04 NULL 6 1
2015-03 NULL 5 1
NULL NULL 7 3
把month和day調(diào)換順序潮饱,則以day維度進(jìn)行層級聚合:SQL語句:
SELECT day, month, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID
FROM cookie5
GROUP BY day,month WITH ROLLUP ORDER BY GROUPING__ID;
可以實現(xiàn)這樣的上鉆過程:天月的UV->天的UV->總UV
這里来氧,根據(jù)天和月進(jìn)行聚合,和根據(jù)天聚合結(jié)果一樣香拉,因為有父子關(guān)系啦扬,如果是其他維度組合的話,就會不一樣