import numpy as np
# 輸入規(guī)格
# X - R(batch_size,nx) , Y - R(batch_size , 1) W - R(1,nx) b — R (1,1)
def layer(X, W, b):
# in: X - R(batch_size,nx) W - R(1,nx)b - R(1,1)
# out: z - R(batch_size,1) - 同Y
z = np.matmul(W, X.T) + b
z = z.T
return z
def sigmoid(z):
# in : z - R(batch_size,1)
# out: pre_y - R(batch_size,1)
return 1 / (1 + np.exp(-z))
def lossfunction(pre_y, true_y):
# in: pre_y -R(bact_size,1) true_y - R(batch_size,1)
# out: loss - R(batch_size,1)
return 0.5 * (pre_y - true_y) ** 2
def forward(X, W, b):
# in: X ,W b
# out: pre_y - R(batch_size,1)
z = layer(X, W, b) # R(batch_size,1)
pre_y = sigmoid(z)
return pre_y
def layer_grad(X, W, b):
# in: X,W,b
# out: [X.T,dz_b] X.T -R(nx,batch_size) dz_b - R(batch_size,1) 同Y
dz_b = np.ones([X.shape[0],1])
return X.T, dz_b
def sigmoid_grad(pre_y):
# in: pre_y - R(batch_size,1)
# out: dy_z - R(batch_size,1)
return pre_y * (1 - pre_y)
def lossfunction_grad(pre_y, true_y):
# in: pre_y , true_y
# out: dl_y - R(batch_size,1)
# print(pre_y.shape, true_y.shape)
return pre_y - true_y
def backward(X, W, b, dl_y):
# in : X,W,b,dl_y dl_y - R(batch_size,1)
# out : dw,db dw - R(1,nx) db - R(1,1)
pre_y = forward(X, W, b) # pre_y - R(batch_size,1)
# print("pred_y: {}".format(pre_y))
dy_z = sigmoid_grad(pre_y) # dy_z - R(batch_size,1)
dz_w, dz_b = layer_grad(X, W, b) # dz_w - R(nx,batch_size) dz_b - R(batch_size,1)
# print(dl_y.shape, dy_z.shape, dz_w.T.shape)
dw = dl_y * dy_z * dz_w.T # R(batch_size,nx)
dw = np.sum(dw,axis=0) # 按列累加 dw - R(1,nx)
dw = dw.reshape([1,dw.shape[0]])
db = dl_y * dy_z # R(batch_size,1)
db = np.sum(db,axis=0) # 按列累加 db - R(1,1)
db = db.reshape([1,1])
return dw, db
class DNN(object):
def __init__(self, batch_size, nx, lr):
self.lr = lr
self.bt = batch_size
self.w, self.b = self.__init__weight(nx)
def __init__weight(self,nx):
w = np.random.randn(1,nx)
b = np.random.randn(1,1)
return w, b
def forward(self, X):
return forward(X, self.w, self.b)
def backward(self, X, dl_y):
return backward(X, self.w, self.b, dl_y)
def step(self, dw, db):
self.w -= self.lr * dw
self.b -= self.lr * db
def train(model, X, Y,batch_size, epochs):
# X - R [Data_size,nx] Y - R[Data_size,1]
losses = []
for e in range(epochs):
count_loss = 0
N = X.shape[0] # Data_size
indexs = list(range(N))
np.random.shuffle(indexs) # BGP
i = 0
while i < N:
batch_indxs = indexs[i:i + batch_size] # R[batch_size,1]
batch_x = X[batch_indxs] # R[batch_size,nx]
batch_y = Y[batch_indxs] # R[batch_size,1]
batch_x = batch_x.reshape([batch_size,nx])
batch_y = batch_y.reshape([batch_size,1])
batch_pre_y = model.forward(batch_x) # R[batch_size,1]
dl_y = lossfunction_grad(batch_pre_y, batch_y) # R[bt,1]
dw, db = model.backward(batch_x, dl_y) # R[1,nx] , R[1,1]
model.step(dw, db)
loss = lossfunction(batch_pre_y, batch_y) # loss -R(batch_size,1)
loss = np.mean(loss)
# print("db: {}".format(db))
print("epoch: {}, batch: {}, loss: {}".format(e, i // batch_size, loss))
count_loss += loss
i += batch_size
print('epochs:{},loss:{}'.format(e, count_loss / batch_size))
losses.append(count_loss)
return np.array(losses)
# 開始咯潦嘶!
batch_size = 100
nx = 10
epochs = 10
train_N = 10000
test_N =10000
lr = 0.001
mu0 = 0
mu1 = 10
X0 = np.random.randn((train_N + test_N) // 2, nx) * 10 + mu0
X1 = np.random.randn((train_N + test_N) // 2, nx) * 10 + mu1
Y0 = np.zeros(X0.shape[0])
Y1 = np.ones(X1.shape[0])
X = np.concatenate((X0, X1)) # 輸入的 X - R(Data_size,nx) 默認(rèn)axis=0 豎著拼接
Y = np.concatenate((Y0, Y1)) # Y - R(Data_size,1)
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, Y, test_size=0.5) # 分成訓(xùn)練集 和測試集
model = DNN(batch_size,nx,lr)
losses = train(model, X_train, y_train,batch_size, epochs)
# 來! 畫個(gè)圖
import matplotlib.pyplot as plt
plt.plot(range(len(losses)), losses)
# 看看結(jié)果
def test(test_X, test_y):
pred_y = model.forward(test_X)
pred_y = pred_y
pred_y[pred_y > 0.5] = 1
pred_y[pred_y <= 0.5] = 0
test_y = test_y.squeeze()
return np.sum(pred_y == test_y) / len(test_y)
test(X_test, y_test)
2.DNN - BGD
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
- 文/潘曉璐 我一進(jìn)店門捐名,熙熙樓的掌柜王于貴愁眉苦臉地迎上來旦万,“玉大人,你說我怎么就攤上這事镶蹋〕伤遥” “怎么了?”我有些...
- 文/不壞的土叔 我叫張陵贺归,是天一觀的道長淆两。 經(jīng)常有香客問我,道長拂酣,這世上最難降的妖魔是什么秋冰? 我笑而不...
- 正文 為了忘掉前任,我火速辦了婚禮婶熬,結(jié)果婚禮上丹莲,老公的妹妹穿的比我還像新娘。我一直安慰自己尸诽,他們只是感情好甥材,可當(dāng)我...
- 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著性含,像睡著了一般洲赵。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上,一...
- 文/蒼蘭香墨 我猛地睜開眼独悴,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了锣尉?” 一聲冷哼從身側(cè)響起刻炒,我...
- 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎自沧,沒想到半個(gè)月后坟奥,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
- 正文 獨(dú)居荒郊野嶺守林人離奇死亡拇厢,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
- 正文 我和宋清朗相戀三年爱谁,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片孝偎。...
- 正文 年R本政府宣布雨效,位于F島的核電站迅涮,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏徽龟。R本人自食惡果不足惜叮姑,卻給世界環(huán)境...
- 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望据悔。 院中可真熱鬧传透,春花似錦、人聲如沸极颓。這莊子的主人今日做“春日...
- 文/蒼蘭香墨 我抬頭看了看天上的太陽菠隆。三九已至兵琳,卻和暖如春狂秘,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背躯肌。 一陣腳步聲響...
- 正文 我出身青樓钱烟,卻偏偏與公主長得像,于是被迫代替她去往敵國和親嫡丙。 傳聞我的和親對象是個(gè)殘疾皇子拴袭,可洞房花燭夜當(dāng)晚...
推薦閱讀更多精彩內(nèi)容
- 2018.2.3 目標(biāo):身心健康稻扬,財(cái)富豐盛 好種子: 1早起健康早餐卦方,種下健康的種子羊瘩,回向群里姐妹及家人身心健康 ...
- 2018.3.1 目標(biāo):身心健康浇坐,財(cái)富豐盛 好種子: 1早起健康早餐睬捶,種下健康的種子 2收拾家,回向女兒和眾學(xué)子干...
- 最近看了斌卡大大《硬派健身減肥篇》近刘,真是很漲知識(shí)啊擒贸,挑出一些我之前并不知道和認(rèn)識(shí)錯(cuò)誤的知識(shí)點(diǎn)來分享一下,更多更細(xì)節(jié)...
- 估計(jì)今天晚上有很多姑娘會(huì)興奮的睡不著,只等零點(diǎn)的鐘聲敲響蹈丸,瘋狂剁手蹬屹。 下班前侣背,同事小敏還問我:“今年雙十一,你老公...