劉小澤寫于2020.7.20
為何取名叫“交響樂”?因為單細胞分析就像一個大樂團撼港,需要各個流程的協(xié)同配合
單細胞交響樂1-常用的數(shù)據(jù)結(jié)構(gòu)SingleCellExperiment
單細胞交響樂2-scRNAseq從實驗到下游簡介
單細胞交響樂3-細胞質(zhì)控
單細胞交響樂4-歸一化
單細胞交響樂5-挑選高變化基因
單細胞交響樂6-降維
單細胞交響樂7-聚類分群
單細胞交響樂8-marker基因檢測
單細胞交響樂9-細胞類型注釋
單細胞交響樂9-細胞類型注釋
單細胞交響樂10-數(shù)據(jù)集整合后的批次矯正
單細胞交響樂11-多樣本間差異分析
單細胞交響樂12-檢測Doublet
單細胞交響樂13-細胞周期推斷
單細胞交響樂14-細胞軌跡推斷
單細胞交響樂15-scRNA與蛋白豐度信息結(jié)合
單細胞交響樂16-處理大型數(shù)據(jù)
單細胞交響樂17-不同單細胞R包的數(shù)據(jù)格式相互轉(zhuǎn)換
單細胞交響樂18-實戰(zhàn)一 Smart-seq2
單細胞交響樂19-實戰(zhàn)二 STRT-Seq
單細胞交響樂20-實戰(zhàn)三 10X 未過濾的PBMC數(shù)據(jù)
單細胞交響樂21-實戰(zhàn)三 批量處理并整合多個10X PBMC數(shù)據(jù)
單細胞交響樂22-實戰(zhàn)五 CEL-seq2
單細胞交響樂23-實戰(zhàn)六 CEL-seq
單細胞交響樂24-實戰(zhàn)七 SMARTer
1 前言
前面的種種都是作為知識儲備送巡,但是不實戰(zhàn)還是記不住前面的知識
這是第八個實戰(zhàn)練習(xí)
這是也是來自多個供體的人類胰腺細胞山上,使用Smart-seq2建庫技術(shù)套啤,數(shù)據(jù)來自Segerstolpe et al. (2016)
數(shù)據(jù)準(zhǔn)備
library(scRNAseq)
sce.seger <- SegerstolpePancreasData()
sce.seger
# class: SingleCellExperiment
# dim: 26179 3514
# metadata(0):
# assays(1): counts
# rownames(26179): SGIP1 AZIN2 ... BIVM-ERCC5 eGFP
# rowData names(2): symbol refseq
# colnames(3514): HP1502401_N13 HP1502401_D14 ...
# HP1526901T2D_O11 HP1526901T2D_A8
# colData names(8): Source Name individual ... age
# body mass index
# reducedDimNames(0):
# altExpNames(1): ERCC
看到3500多個細胞彤侍,包含ERCC肠缨,使用Symbol ID
看下樣本信息:
ID轉(zhuǎn)換
選擇的方式是:將沒有匹配的NA去掉,并且去掉重復(fù)的行
# 首先得到symbol ID和對應(yīng)的Ensembl ID(其中會存在無對應(yīng)的NA情況)
library(AnnotationHub)
edb <- AnnotationHub()[["AH73881"]]
symbols <- rowData(sce.seger)$symbol
ens.id <- mapIds(edb, keys=symbols, keytype="SYMBOL", column="GENEID")
# 之前見到的方法是:
# keep <- !is.na(gene.ids) & !duplicated(gene.ids)
# 這里使用了另一種方法(不是直接將NA去掉拥刻,而且替換成了symbol)
ens.id <- ifelse(is.na(ens.id), symbols, ens.id)
keep <- !duplicated(ens.id)
sce.seger <- sce.seger[keep,]
rownames(sce.seger) <- ens.id[keep]
小結(jié)一下:至此見到了三種ID轉(zhuǎn)換的方式怜瞒,根據(jù)最后保留的基因數(shù)量党窜,可以排個序:
保留基因最多(保留了NA和重復(fù)):
uniquifyFeatureNames
中等(保留了NA旅赢,去掉重復(fù)):ifelse(is.na(ens.id), symbols, ens.id)
最少(去掉了NA以及重復(fù)):!is.na(gene.ids) & !duplicated(gene.ids)
編輯樣本信息
之前有8列樣本的信息,有點冗余了喇闸。這里只保留3列關(guān)心的蒸眠,并重新命名
emtab.meta <- colData(sce.seger)[,c("cell type",
"individual", "single cell well quality")]
colnames(emtab.meta) <- c("CellType", "Donor", "Quality")
colData(sce.seger) <- emtab.meta
另外把細胞類型這一列中的“cell”字符去掉漾橙,并把首字母大寫
sce.seger$CellType <- gsub(" cell", "", sce.seger$CellType)
sce.seger$CellType <- paste0(
toupper(substr(sce.seger$CellType, 1, 1)),
substring(sce.seger$CellType, 2))
2 質(zhì)控
依然是備份一下,把unfiltered數(shù)據(jù)主要用在質(zhì)控的探索上
unfiltered <- sce.seger
之前作者在數(shù)據(jù)中已經(jīng)標(biāo)注了細胞質(zhì)量楞卡,可以看到有問題的細胞還是很多的:
table(sce.seger$Quality)
#
# control, 2-cell well control, empty well low quality cell OK
# 32 96 1177 2209
因此就要注意了霜运,這里的數(shù)據(jù)會不會滿足“大部分細胞都是高質(zhì)量的”這個假設(shè)脾歇?
還是需要試一下,看看結(jié)果先
library(scater)
stats <- perCellQCMetrics(sce.seger)
qc1 <- quickPerCellQC(stats, percent_subsets="altexps_ERCC_percent",
batch=sce.seger$Donor)
colData(unfiltered) <- cbind(colData(unfiltered), stats)
unfiltered$discard <- qc1$discard
gridExtra::grid.arrange(
plotColData(unfiltered, x="Donor", y="sum", colour_by="discard") +
scale_y_log10() + ggtitle("Total count") +
theme(axis.text.x = element_text(angle = 90)),
plotColData(unfiltered, x="Donor", y="detected", colour_by="discard") +
scale_y_log10() + ggtitle("Detected features") +
theme(axis.text.x = element_text(angle = 90)),
plotColData(unfiltered, x="Donor", y="altexps_ERCC_percent",
colour_by="discard") + ggtitle("ERCC percent") +
theme(axis.text.x = element_text(angle = 90)),
ncol=3
)
看到HP1509101在過濾時存在過濾不完全的情況淘捡,HP1504901過濾的ERCC數(shù)量太多藕各,推測這兩個批次效果可能并不是很好,可能存在大量的低質(zhì)量細胞
因此焦除,再次指定subset
參數(shù)激况,重新畫圖
library(scater)
stats <- perCellQCMetrics(sce.seger)
qc <- quickPerCellQC(stats, percent_subsets="altexps_ERCC_percent",
batch=sce.seger$Donor,
subset=!sce.seger$Donor %in% c("HP1504901", "HP1509101"))
看看過濾掉多少
colSums(as.matrix(qc))
## low_lib_size low_n_features high_altexps_ERCC_percent
## 788 1056 1031
## discard
## 1246
最后將qc過濾的與本來標(biāo)注低質(zhì)量的一同過濾
low.qual <- sce.seger$Quality == "low quality cell"
sce.seger <- sce.seger[,!(qc$discard | low.qual)]
# 過濾了大概1500個細胞
> dim(unfiltered);dim(sce.seger)
[1] 26179 3514
[1] 26179 2090
3 歸一化
此處會有一點小問題,值得注意膘魄!
本來有ERCC乌逐,操作應(yīng)該是:
library(scran)
sce.seger = computeSpikeFactors(sce.seger, "ERCC")
sce.seger <- logNormCounts(sce.seger)
# Error in .local(x, ...) : size factors should be positive
但由于存在幾個細胞中一個ERCC都沒有,所以會報錯
此時面臨兩個選擇:要么把這幾個細胞去掉创葡;要么就不借助ERCC浙踢,用另一種去卷積方法
> table(colSums(counts(altExp(sce.seger)))==0)
FALSE TRUE
2087 3
如果要去掉這幾個細胞:
test=sce.seger[,!colSums(counts(altExp(sce.seger)))==0]
sce.test = computeSpikeFactors(test, "ERCC")
sce.test <- logNormCounts(test)
我們這里選擇保守的方法,不去掉細胞灿渴,使用另一種去卷積方法:
clusters <- quickCluster(sce.seger)
sce.seger <- computeSumFactors(sce.seger, clusters=clusters)
sce.seger <- logNormCounts(sce.seger)
summary(sizeFactors(sce.seger))
# Min. 1st Qu. Median Mean 3rd Qu. Max.
# 0.0000 0.1832 0.4016 1.0000 1.0996 12.9607
4 找高變異基因
下面構(gòu)建模型想使用modelGeneVarWithSpikes
洛波,于是首先應(yīng)該把那幾個沒有ERCC的細胞去掉;另外由于AZ這個批次相對其他批次的細胞數(shù)量過于少逻杖,因此在模型構(gòu)建中也把它去掉吧
for.hvg <- sce.seger[,librarySizeFactors(altExp(sce.seger)) > 0
& sce.seger$Donor!="AZ"]
dec.seger <- modelGeneVarWithSpikes(for.hvg, "ERCC", block=for.hvg$Donor)
chosen.hvgs <- getTopHVGs(dec.seger, n=2000)
如果要批量作圖檢查的話
# 批次數(shù)量較多奋岁,因此設(shè)置多行多列顯示
par(mfrow=c(3,3))
blocked.stats <- dec.seger$per.block
for (i in colnames(blocked.stats)) {
current <- blocked.stats[[i]]
plot(current$mean, current$total, main=i, pch=16, cex=0.5,
xlab="Mean of log-expression", ylab="Variance of log-expression")
curfit <- metadata(current)
points(curfit$mean, curfit$var, col="red", pch=16)
curve(curfit$trend(x), col='dodgerblue', add=TRUE, lwd=2)
}
注意,這里在找完HVGs后荸百,沒有進行批次矯正闻伶,如果繼續(xù)向下做,會發(fā)現(xiàn)什么够话?
5 降維聚類
降維
library(BiocSingular)
set.seed(101011001)
sce.seger <- runPCA(sce.seger, subset_row=chosen.hvgs, ncomponents=25)
sce.seger <- runTSNE(sce.seger, dimred="PCA")
聚類
snn.gr <- buildSNNGraph(sce.seger, use.dimred="PCA")
colLabels(sce.seger) <- factor(igraph::cluster_walktrap(snn.gr)$membership)
檢查聚類分群與批次
tab <- table(Cluster=colLabels(sce.seger), Donor=sce.seger$Donor)
library(pheatmap)
pheatmap(log10(tab+10), color=viridis::viridis(100))
結(jié)果真的是:批次效應(yīng)影響了分群蓝翰,因此最好還是做一遍fastMNN
操作
tSNE圖中也是顯示出了強烈的批次效應(yīng)
gridExtra::grid.arrange(
plotTSNE(sce.seger, colour_by="label"),
plotTSNE(sce.seger, colour_by="Donor"),
ncol=2
)
6 補充矯正批次效應(yīng)
上圖看到很明顯的批次效應(yīng),那么如果處理后女嘲,會有什么不同嗎畜份?
利用fastMNN矯正
library(batchelor)
set.seed(1001010)
merged.seger <- fastMNN(sce.seger, subset.row=chosen.hvgs,
batch=sce.seger$Donor)
merged.seger
# class: SingleCellExperiment
# dim: 2000 2090
# metadata(2): merge.info pca.info
# assays(1): reconstructed
# rownames(2000): GCG TTR ... MAP6 LCP1
# rowData names(1): rotation
# colnames(2090): HP1502401_H13 HP1502401_J14 ...
# HP1526901T2D_N8 HP1526901T2D_A8
# colData names(2): batch label
# reducedDimNames(2): corrected TSNE
# altExpNames(0):
# metadata(merged.seger)$merge.info$lost.var
# lost.var :值越大表示丟失的真實生物異質(zhì)性越多
因為fastMNN會包含PCA降維,所以下面繼續(xù)進行tSNE即可
降維聚類
library(BiocSingular)
set.seed(101011001)
merged.seger <- runTSNE(merged.seger, dimred="corrected")
snn.gr <- buildSNNGraph(merged.seger, use.dimred="corrected")
colLabels(merged.seger) <- factor(igraph::cluster_walktrap(snn.gr)$membership)
再次作圖欣尼,是不是明顯比之前好很多爆雹?
gridExtra::grid.arrange(
plotTSNE(merged.seger, colour_by="label"),
plotTSNE(merged.seger, colour_by="batch"),
ncol=2
)
歡迎關(guān)注我們的公眾號~_~
我們是兩個農(nóng)轉(zhuǎn)生信的小碩,打造生信星球愕鼓,想讓它成為一個不拽術(shù)語钙态、通俗易懂的生信知識平臺。需要幫助或提出意見請后臺留言或發(fā)送郵件到jieandze1314@gmail.com