Twitter Anomaly Detection Tool For Human (Or Spam) Data Behavior Analysis

【時(shí)間序列】【異常檢測(cè)】【Twitter】

Twitter Anomaly Detection Tool

Twitter has called upon the software application developer community to help in the global fight against hacking and spammers. The company has released its AnomalyDetection software tool to open source on the GitHub code repository.

Twitter hopes that this open release will a) allow the community to learn from the software and b) help evolve the tool further.

Spikes and surges

When Twitter talks about ‘a(chǎn)nomalies’ it is referring to spikes and surges of traffic on the network that can be caused by both legitimate and malicious activity.

“Both last year and this year, we saw a spike in the number of photos uploaded to Twitter on Christmas Eve, Christmas and New Year’s Eve (in other words, an anomaly occurred in the corresponding time series),” said Twitter, on the firm’s technical blog.

So while Christmas photo uploads spikes are a genuine discrete event for Twitter, the potential exists for similar unusual traffic surges caused by spam bots and hacking activity. With firms now increasingly operating big data analytics databases and real time network/cloud-based services, unwelcome (and unplanned) traffic surges can result in denial-of-service, website downtime and deeper offline problems.

Machine learning & algorithmic logic

Twitter’s AnomalyDetection is an open-source R statistical computing language package designed to automatically detects anomalies. It is built around algorithmic logic designed to accommodate for anomaly detection in the presence of seasonality and an underlying trend.?Closely related to the discipline of machine learning, anomaly detection in this case employs ‘piecewise approximation’ – a mathematical function that enables the software to produce intelligent trend extraction from a set of traffic data.

According to Twitter, “Early detection of anomalies plays a key role in ensuring high-fidelity data is available to our own product teams and those of our data partners. This package helps us monitor spikes in user engagement on the platform surrounding holidays, major sporting events or during breaking news. The package can be used to find such bots or spam, as well as detect anomalies in system metrics after a new software release. We’re open-sourcing AnomalyDetection because we’d like the public community to evolve the package and learn from it as we have.”

Recommended by Forbes

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市甚疟,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌颤绕,老刑警劉巖捕虽,帶你破解...
    沈念sama閱讀 206,311評(píng)論 6 481
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件慨丐,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡泄私,警方通過(guò)查閱死者的電腦和手機(jī)房揭,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 88,339評(píng)論 2 382
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái)晌端,“玉大人捅暴,你說(shuō)我怎么就攤上這事∵志溃” “怎么了蓬痒?”我有些...
    開(kāi)封第一講書(shū)人閱讀 152,671評(píng)論 0 342
  • 文/不壞的土叔 我叫張陵,是天一觀的道長(zhǎng)漆羔。 經(jīng)常有香客問(wèn)我梧奢,道長(zhǎng),這世上最難降的妖魔是什么演痒? 我笑而不...
    開(kāi)封第一講書(shū)人閱讀 55,252評(píng)論 1 279
  • 正文 為了忘掉前任亲轨,我火速辦了婚禮,結(jié)果婚禮上鸟顺,老公的妹妹穿的比我還像新娘惦蚊。我一直安慰自己,他們只是感情好诊沪,可當(dāng)我...
    茶點(diǎn)故事閱讀 64,253評(píng)論 5 371
  • 文/花漫 我一把揭開(kāi)白布养筒。 她就那樣靜靜地躺著,像睡著了一般端姚。 火紅的嫁衣襯著肌膚如雪晕粪。 梳的紋絲不亂的頭發(fā)上,一...
    開(kāi)封第一講書(shū)人閱讀 49,031評(píng)論 1 285
  • 那天渐裸,我揣著相機(jī)與錄音巫湘,去河邊找鬼。 笑死昏鹃,一個(gè)胖子當(dāng)著我的面吹牛尚氛,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播洞渤,決...
    沈念sama閱讀 38,340評(píng)論 3 399
  • 文/蒼蘭香墨 我猛地睜開(kāi)眼阅嘶,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來(lái)了?” 一聲冷哼從身側(cè)響起讯柔,我...
    開(kāi)封第一講書(shū)人閱讀 36,973評(píng)論 0 259
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤抡蛙,失蹤者是張志新(化名)和其女友劉穎,沒(méi)想到半個(gè)月后魂迄,有當(dāng)?shù)厝嗽跇?shù)林里發(fā)現(xiàn)了一具尸體粗截,經(jīng)...
    沈念sama閱讀 43,466評(píng)論 1 300
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 35,937評(píng)論 2 323
  • 正文 我和宋清朗相戀三年捣炬,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了熊昌。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片。...
    茶點(diǎn)故事閱讀 38,039評(píng)論 1 333
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡湿酸,死狀恐怖婿屹,靈堂內(nèi)的尸體忽然破棺而出,到底是詐尸還是另有隱情稿械,我是刑警寧澤选泻,帶...
    沈念sama閱讀 33,701評(píng)論 4 323
  • 正文 年R本政府宣布,位于F島的核電站美莫,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏梯捕。R本人自食惡果不足惜厢呵,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,254評(píng)論 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望傀顾。 院中可真熱鬧襟铭,春花似錦、人聲如沸短曾。這莊子的主人今日做“春日...
    開(kāi)封第一講書(shū)人閱讀 30,259評(píng)論 0 19
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)嫉拐。三九已至哩都,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間婉徘,已是汗流浹背漠嵌。 一陣腳步聲響...
    開(kāi)封第一講書(shū)人閱讀 31,485評(píng)論 1 262
  • 我被黑心中介騙來(lái)泰國(guó)打工, 沒(méi)想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留盖呼,地道東北人儒鹿。 一個(gè)月前我還...
    沈念sama閱讀 45,497評(píng)論 2 354
  • 正文 我出身青樓,卻偏偏與公主長(zhǎng)得像几晤,于是被迫代替她去往敵國(guó)和親约炎。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 42,786評(píng)論 2 345

推薦閱讀更多精彩內(nèi)容