時(shí)間序列分析(python)

1.時(shí)間序列的生成

1.1固定周期(period)&時(shí)間間隔(interval)
1.2時(shí)間戳(timestamp)&時(shí)間區(qū)間(freq)
時(shí)間序列分析圖例:


圖例

1.1固定周期(period)&時(shí)間間隔(interval)

import pandas as pd
import numpy as np
##TIMES #2016 Jul 1 7/1/2016 1/7/2016 2016-07-01 2016/07/01
##生成時(shí)間序列默辨,periods代表周期,
##freq代表頻率(默認(rèn)是D):D代表天缔莲,M代表月第练,H代表小時(shí)
rng = pd.date_range('2016-07-01', periods = 10, freq = '3D')
rng
###結(jié)果
DatetimeIndex(['2016-07-01', '2016-07-04', '2016-07-07', '2016-07-10',
               '2016-07-13', '2016-07-16', '2016-07-19', '2016-07-22',
               '2016-07-25', '2016-07-28'],
              dtype='datetime64[ns]', freq='3D')
freq參數(shù)
##用2016,1,1-2016,1,20為標(biāo)簽生成一組時(shí)間序列
time=pd.Series(np.random.randn(20),
           index=pd.date_range(dt.datetime(2016,1,1),periods=20))
print(time)
###結(jié)果
2016-01-01   -0.129379
2016-01-02    0.164480
2016-01-03   -0.639117
2016-01-04   -0.427224
2016-01-05    2.055133
2016-01-06    1.116075
2016-01-07    0.357426
2016-01-08    0.274249
2016-01-09    0.834405
2016-01-10   -0.005444
2016-01-11   -0.134409
2016-01-12    0.249318
2016-01-13   -0.297842
2016-01-14   -0.128514
2016-01-15    0.063690
2016-01-16   -2.246031
2016-01-17    0.359552
2016-01-18    0.383030
2016-01-19    0.402717
2016-01-20   -0.694068
Freq: D, dtype: float64
##截?cái)嗔κ裕?016-1-10之后的
time.truncate(before='2016-1-10之后的')
###結(jié)果
2016-01-10   -0.005444
2016-01-11   -0.134409
2016-01-12    0.249318
2016-01-13   -0.297842
2016-01-14   -0.128514
2016-01-15    0.063690
2016-01-16   -2.246031
2016-01-17    0.359552
2016-01-18    0.383030
2016-01-19    0.402717
2016-01-20   -0.694068
Freq: D, dtype: float64
##截?cái)喾净ⅲ?016-1-10之前的
time.truncate(after='2016-1-10')
###結(jié)果:
2016-01-01   -0.129379
2016-01-02    0.164480
2016-01-03   -0.639117
2016-01-04   -0.427224
2016-01-05    2.055133
2016-01-06    1.116075
2016-01-07    0.357426
2016-01-08    0.274249
2016-01-09    0.834405
2016-01-10   -0.005444
Freq: D, dtype: float64
##取出某個(gè)日期的數(shù)據(jù)
print(time['2016-01-15'])
##結(jié)果0.063690487247
#切片
print(time['2016-01-15':'2016-01-20'])
###結(jié)果
2016-01-15    0.063690
2016-01-16   -2.246031
2016-01-17    0.359552
2016-01-18    0.383030
2016-01-19    0.402717
2016-01-20   -0.694068
Freq: D, dtype: float64
##設(shè)定起始時(shí)間和終止時(shí)間生成時(shí)間序列
data=pd.date_range('2010-01-01','2011-01-01',freq='M')
print(data)
###結(jié)果
DatetimeIndex(['2010-01-31', '2010-02-28', '2010-03-31', '2010-04-30',
               '2010-05-31', '2010-06-30', '2010-07-31', '2010-08-31',
               '2010-09-30', '2010-10-31', '2010-11-30', '2010-12-31'],
              dtype='datetime64[ns]', freq='M')

1.2時(shí)間戳(timestamp)&時(shí)間區(qū)間

#時(shí)間戳
pd.Timestamp('2016-07-10')
##結(jié)果:Timestamp('2016-07-10 00:00:00')

# 可以指定更多細(xì)節(jié)
pd.Timestamp('2016-07-10 10')
##結(jié)果:Timestamp('2016-07-10 10:00:00')

pd.Timestamp('2016-07-10 10:15')
##結(jié)果:Timestamp('2016-07-10 10:15:00')


#時(shí)間區(qū)間函數(shù)
pd.Period('2016-01')
##按月的固定區(qū)間豌研,結(jié)果:Period('2016-01', 'M')  
pd.Period('2016-01-01')
##按天的固定區(qū)間,結(jié)果:Period('2016-01-01', 'D')


#TIME OFFSETS時(shí)間偏移量
pd.Timedelta('1 day')
##結(jié)果:Timedelta('1 days 00:00:00')

#指定區(qū)間偏移一天
pd.Period('2016-01-01 10:10') + pd.Timedelta('1 day')
##結(jié)果:Period('2016-01-02 10:10', 'T')
##指定時(shí)間戳偏移一天
pd.Timestamp('2016-01-01 10:10') + pd.Timedelta('1 day')
##結(jié)果:Timestamp('2016-01-02 10:10:00')
#指定時(shí)間戳偏移15ns
pd.Timestamp('2016-01-01 10:10') + pd.Timedelta('15 ns')
##結(jié)果:Timestamp('2016-01-01 10:10:00.000000015')

#時(shí)間間隔為25H小時(shí)贬丛,區(qū)間為10生成時(shí)間序列的兩種方式
p1 = pd.period_range('2016-01-01 10:10', freq = '25H', periods = 10)
p2 = pd.period_range('2016-01-01 10:10', freq = '1D1H', periods = 10)
##p1,p2結(jié)果一樣:
PeriodIndex(['2016-01-01 10:00', '2016-01-02 11:00', '2016-01-03 12:00',
             '2016-01-04 13:00', '2016-01-05 14:00', '2016-01-06 15:00',
             '2016-01-07 16:00', '2016-01-08 17:00', '2016-01-09 18:00',
             '2016-01-10 19:00'],
            dtype='period[25H]', freq='25H')

# 指定索引
rng = pd.date_range('2016 Jul 1', periods = 10, freq = 'D')
#用rng作為時(shí)間索引
pd.Series(range(len(rng)), index = rng)
##結(jié)果:
2016-07-01    0
2016-07-02    1
2016-07-03    2
2016-07-04    3
2016-07-05    4
2016-07-06    5
2016-07-07    6
2016-07-08    7
2016-07-09    8
2016-07-10    9
Freq: D, dtype: int32

#手動(dòng)輸入三個(gè)區(qū)間
periods = [pd.Period('2016-01'), pd.Period('2016-02'), pd.Period('2016-03')]
ts = pd.Series(np.random.randn(len(periods)), index = periods)
ts
##結(jié)果:
2016-01   -0.015837
2016-02   -0.923463
2016-03   -0.485212
Freq: M, dtype: float64

# 時(shí)間戳和時(shí)間周期可以轉(zhuǎn)換
ts = pd.Series(range(10), pd.date_range('07-10-16 8:00', periods = 10, freq = 'H'))
ts
##結(jié)果
2016-07-10 08:00:00    0
2016-07-10 09:00:00    1
2016-07-10 10:00:00    2
2016-07-10 11:00:00    3
2016-07-10 12:00:00    4
2016-07-10 13:00:00    5
2016-07-10 14:00:00    6
2016-07-10 15:00:00    7
2016-07-10 16:00:00    8
2016-07-10 17:00:00    9
Freq: H, dtype: int32

##用to_period()可以把時(shí)間戳轉(zhuǎn)化成時(shí)間周期
ts_period = ts.to_period()
ts_period
##結(jié)果:
2016-07-10 08:00    0
2016-07-10 09:00    1
2016-07-10 10:00    2
2016-07-10 11:00    3
2016-07-10 12:00    4
2016-07-10 13:00    5
2016-07-10 14:00    6
2016-07-10 15:00    7
2016-07-10 16:00    8
2016-07-10 17:00    9
Freq: H, dtype: int32

##時(shí)間周期和時(shí)間戳的區(qū)別
ts_period['2016-07-10 08:30':'2016-07-10 11:45'] 
##結(jié)果:
2016-07-10 08:00    0
2016-07-10 09:00    1
2016-07-10 10:00    2
2016-07-10 11:00    3
Freq: H, dtype: int32
##時(shí)間周期算頭算尾,時(shí)間戳從下一個(gè)整點(diǎn)開始算
ts['2016-07-10 08:30':'2016-07-10 11:45'] 
##結(jié)果:
2016-07-10 09:00:00    1
2016-07-10 10:00:00    2
2016-07-10 11:00:00    3
Freq: H, dtype: int32

2.數(shù)據(jù)重采樣與插值

2.1數(shù)據(jù)重采樣 (時(shí)間數(shù)據(jù)由一個(gè)頻率轉(zhuǎn)換到另一個(gè)頻率)
降采樣
升采樣
2.2 插值填充

2.1數(shù)據(jù)重采樣

import pandas as pd
import numpy as np
rng = pd.date_range('1/1/2011', periods=90, freq='D')
ts = pd.Series(np.random.randn(len(rng)), index=rng)
ts.head()
##結(jié)果:
2011-01-01   -1.025562
2011-01-02    0.410895
2011-01-03    0.660311
2011-01-04    0.710293
2011-01-05    0.444985
Freq: D, dtype: float64
##把天轉(zhuǎn)化為月给涕,再把每個(gè)月每天的數(shù)值累加
ts.resample('M').sum()
##結(jié)果:
2011-01-31    2.510102
2011-02-28    0.583209
2011-03-31    2.749411
Freq: M, dtype: float64
##把天轉(zhuǎn)化為3天豺憔,再把每個(gè)三天的數(shù)值累加
ts.resample('3D').sum()
##結(jié)果:
2011-01-01    0.045643
2011-01-04   -2.255206
2011-01-07    0.571142
2011-01-10    0.835032
2011-01-13   -0.396766
2011-01-16   -1.156253
2011-01-19   -1.286884
2011-01-22    2.883952
2011-01-25    1.566908
2011-01-28    1.435563
2011-01-31    0.311565
2011-02-03   -2.541235
2011-02-06    0.317075
2011-02-09    1.598877
2011-02-12   -1.950509
2011-02-15    2.928312
2011-02-18   -0.733715
2011-02-21    1.674817
2011-02-24   -2.078872
2011-02-27    2.172320
2011-03-02   -2.022104
2011-03-05   -0.070356
2011-03-08    1.276671
2011-03-11   -2.835132
2011-03-14   -1.384113
2011-03-17    1.517565
2011-03-20   -0.550406
2011-03-23    0.773430
2011-03-26    2.244319
2011-03-29    2.951082
Freq: 3D, dtype: float64

##把天轉(zhuǎn)化為3天,再把每個(gè)三天的數(shù)值累加并求每天的平均值
day3Ts = ts.resample('3D').mean()
day3Ts
##結(jié)果:
2011-01-01    0.015214
2011-01-04   -0.751735
2011-01-07    0.190381
2011-01-10    0.278344
2011-01-13   -0.132255
2011-01-16   -0.385418
2011-01-19   -0.428961
2011-01-22    0.961317
2011-01-25    0.522303
2011-01-28    0.478521
2011-01-31    0.103855
2011-02-03   -0.847078
2011-02-06    0.105692
2011-02-09    0.532959
2011-02-12   -0.650170
2011-02-15    0.976104
2011-02-18   -0.244572
2011-02-21    0.558272
2011-02-24   -0.692957
2011-02-27    0.724107
2011-03-02   -0.674035
2011-03-05   -0.023452
2011-03-08    0.425557
2011-03-11   -0.945044
2011-03-14   -0.461371
2011-03-17    0.505855
2011-03-20   -0.183469
2011-03-23    0.257810
2011-03-26    0.748106
2011-03-29    0.983694
Freq: 3D, dtype: float64

##升采樣够庙,把三天為單位的轉(zhuǎn)化為一天為單位的恭应,
##nan為缺失值,需要用到插值填充
print(day3Ts.resample('D').asfreq())
##結(jié)果:
2011-01-01    0.015214
2011-01-02         NaN
2011-01-03         NaN
2011-01-04   -0.751735
2011-01-05         NaN
2011-01-06         NaN
2011-01-07    0.190381
2011-01-08         NaN
2011-01-09         NaN
2011-01-10    0.278344
2011-01-11         NaN
2011-01-12         NaN
2011-01-13   -0.132255
2011-01-14         NaN
2011-01-15         NaN
2011-01-16   -0.385418
2011-01-17         NaN
2011-01-18         NaN
2011-01-19   -0.428961
2011-01-20         NaN
2011-01-21         NaN
2011-01-22    0.961317
2011-01-23         NaN
2011-01-24         NaN
2011-01-25    0.522303
2011-01-26         NaN
2011-01-27         NaN
2011-01-28    0.478521
2011-01-29         NaN
2011-01-30         NaN
                ...   
2011-02-28         NaN
2011-03-01         NaN
2011-03-02   -0.674035
2011-03-03         NaN
2011-03-04         NaN
2011-03-05   -0.023452
2011-03-06         NaN
2011-03-07         NaN
2011-03-08    0.425557
2011-03-09         NaN
2011-03-10         NaN
2011-03-11   -0.945044
2011-03-12         NaN
2011-03-13         NaN
2011-03-14   -0.461371
2011-03-15         NaN
2011-03-16         NaN
2011-03-17    0.505855
2011-03-18         NaN
2011-03-19         NaN
2011-03-20   -0.183469
2011-03-21         NaN
2011-03-22         NaN
2011-03-23    0.257810
2011-03-24         NaN
2011-03-25         NaN
2011-03-26    0.748106
2011-03-27         NaN
2011-03-28         NaN
2011-03-29    0.983694
Freq: D, Length: 88, dtype: float64

2.2 插值填充

插值方法:
ffill 空值取前面的值
bfill 空值取后面的值
interpolate 線性取值

##把前面的一個(gè)值填充下去
day3Ts.resample('D').ffill(1)
##結(jié)果:
2011-01-01    0.015214
2011-01-02    0.015214
2011-01-03         NaN
2011-01-04   -0.751735
2011-01-05   -0.751735
2011-01-06         NaN
2011-01-07    0.190381
2011-01-08    0.190381
2011-01-09         NaN
2011-01-10    0.278344
2011-01-11    0.278344
2011-01-12         NaN
2011-01-13   -0.132255
2011-01-14   -0.132255
2011-01-15         NaN
2011-01-16   -0.385418
2011-01-17   -0.385418
2011-01-18         NaN
2011-01-19   -0.428961
2011-01-20   -0.428961
2011-01-21         NaN
2011-01-22    0.961317
2011-01-23    0.961317
2011-01-24         NaN
2011-01-25    0.522303
2011-01-26    0.522303
2011-01-27         NaN
2011-01-28    0.478521
2011-01-29    0.478521
2011-01-30         NaN
                ...   
2011-02-28    0.724107
2011-03-01         NaN
2011-03-02   -0.674035
2011-03-03   -0.674035
2011-03-04         NaN
2011-03-05   -0.023452
2011-03-06   -0.023452
2011-03-07         NaN
2011-03-08    0.425557
2011-03-09    0.425557
2011-03-10         NaN
2011-03-11   -0.945044
2011-03-12   -0.945044
2011-03-13         NaN
2011-03-14   -0.461371
2011-03-15   -0.461371
2011-03-16         NaN
2011-03-17    0.505855
2011-03-18    0.505855
2011-03-19         NaN
2011-03-20   -0.183469
2011-03-21   -0.183469
2011-03-22         NaN
2011-03-23    0.257810
2011-03-24    0.257810
2011-03-25         NaN
2011-03-26    0.748106
2011-03-27    0.748106
2011-03-28         NaN
2011-03-29    0.983694
Freq: D, Length: 88, dtype: float64

##把后面的一個(gè)值插入到前面
day3Ts.resample('D').bfill(1)
##結(jié)果:
2011-01-01    0.015214
2011-01-02         NaN
2011-01-03   -0.751735
2011-01-04   -0.751735
2011-01-05         NaN
2011-01-06    0.190381
2011-01-07    0.190381
2011-01-08         NaN
2011-01-09    0.278344
2011-01-10    0.278344
2011-01-11         NaN
2011-01-12   -0.132255
2011-01-13   -0.132255
2011-01-14         NaN
2011-01-15   -0.385418
2011-01-16   -0.385418
2011-01-17         NaN
2011-01-18   -0.428961
2011-01-19   -0.428961
2011-01-20         NaN
2011-01-21    0.961317
2011-01-22    0.961317
2011-01-23         NaN
2011-01-24    0.522303
2011-01-25    0.522303
2011-01-26         NaN
2011-01-27    0.478521
2011-01-28    0.478521
2011-01-29         NaN
2011-01-30    0.103855
                ...   
2011-02-28         NaN
2011-03-01   -0.674035
2011-03-02   -0.674035
2011-03-03         NaN
2011-03-04   -0.023452
2011-03-05   -0.023452
2011-03-06         NaN
2011-03-07    0.425557
2011-03-08    0.425557
2011-03-09         NaN
2011-03-10   -0.945044
2011-03-11   -0.945044
2011-03-12         NaN
2011-03-13   -0.461371
2011-03-14   -0.461371
2011-03-15         NaN
2011-03-16    0.505855
2011-03-17    0.505855
2011-03-18         NaN
2011-03-19   -0.183469
2011-03-20   -0.183469
2011-03-21         NaN
2011-03-22    0.257810
2011-03-23    0.257810
2011-03-24         NaN
2011-03-25    0.748106
2011-03-26    0.748106
2011-03-27         NaN
2011-03-28    0.983694
2011-03-29    0.983694
Freq: D, Length: 88, dtype: float64

##線性插值耘眨,擬合一條線昼榛,
##例如:
##這里會(huì)把2011-01-01和2011-01-04連一條直線,來(lái)得到2011-01-02和2011-01-03的值
day3Ts.resample('D').interpolate('linear')
##結(jié)果:
2011-01-01    0.015214
2011-01-02   -0.240435
2011-01-03   -0.496085
2011-01-04   -0.751735
2011-01-05   -0.437697
2011-01-06   -0.123658
2011-01-07    0.190381
2011-01-08    0.219702
2011-01-09    0.249023
2011-01-10    0.278344
2011-01-11    0.141478
2011-01-12    0.004611
2011-01-13   -0.132255
2011-01-14   -0.216643
2011-01-15   -0.301030
2011-01-16   -0.385418
2011-01-17   -0.399932
2011-01-18   -0.414447
2011-01-19   -0.428961
2011-01-20    0.034465
2011-01-21    0.497891
2011-01-22    0.961317
2011-01-23    0.814979
2011-01-24    0.668641
2011-01-25    0.522303
2011-01-26    0.507709
2011-01-27    0.493115
2011-01-28    0.478521
2011-01-29    0.353632
2011-01-30    0.228744
                ...   
2011-02-28    0.258060
2011-03-01   -0.207988
2011-03-02   -0.674035
2011-03-03   -0.457174
2011-03-04   -0.240313
2011-03-05   -0.023452
2011-03-06    0.126218
2011-03-07    0.275887
2011-03-08    0.425557
2011-03-09   -0.031310
2011-03-10   -0.488177
2011-03-11   -0.945044
2011-03-12   -0.783820
2011-03-13   -0.622595
2011-03-14   -0.461371
2011-03-15   -0.138962
2011-03-16    0.183446
2011-03-17    0.505855
2011-03-18    0.276080
2011-03-19    0.046306
2011-03-20   -0.183469
2011-03-21   -0.036376
2011-03-22    0.110717
2011-03-23    0.257810
2011-03-24    0.421242
2011-03-25    0.584674
2011-03-26    0.748106
2011-03-27    0.826636
2011-03-28    0.905165
2011-03-29    0.983694
Freq: D, Length: 88, dtype: float64

滑動(dòng)窗口

%matplotlib inline 
import matplotlib.pylab
import numpy as np
import pandas as pd
#先隨機(jī)生成一組時(shí)間序列
df = pd.Series(np.random.randn(600), index = pd.date_range('7/1/2016', freq = 'D', periods = 600))
##查看一下數(shù)據(jù)前五行
df.head()
##結(jié)果:
2016-07-01   -0.192140
2016-07-02    0.357953
2016-07-03   -0.201847
2016-07-04   -0.372230
2016-07-05    1.414753
Freq: D, dtype: float64

##滑動(dòng)窗口剔难,類似股票的均線胆屿,例如五日均線奥喻,把近五天的值的平均值作為當(dāng)前天的值,
##這樣處理線會(huì)更加平緩非迹,單獨(dú)的值也更加有代表性环鲤,在我們這里取10天
r = df.rolling(window = 10)
#可以取中位數(shù),方差憎兽,標(biāo)準(zhǔn)差等r.max, r.median, r.std, r.skew, r.sum, r.var 
print(r.mean())
##結(jié)果:
2016-07-01         NaN
2016-07-02         NaN
2016-07-03         NaN
2016-07-04         NaN
2016-07-05         NaN
2016-07-06         NaN
2016-07-07         NaN
2016-07-08         NaN
2016-07-09         NaN
2016-07-10    0.300133
2016-07-11    0.284780
2016-07-12    0.252831
2016-07-13    0.220699
2016-07-14    0.167137
2016-07-15    0.018593
2016-07-16   -0.061414
2016-07-17   -0.134593
2016-07-18   -0.153333
2016-07-19   -0.218928
2016-07-20   -0.169426
2016-07-21   -0.219747
2016-07-22   -0.181266
2016-07-23   -0.173674
2016-07-24   -0.130629
2016-07-25   -0.166730
2016-07-26   -0.233044
2016-07-27   -0.256642
2016-07-28   -0.280738
2016-07-29   -0.289893
2016-07-30   -0.379625
                ...   
2018-01-22   -0.211467
2018-01-23    0.034996
2018-01-24   -0.105910
2018-01-25   -0.145774
2018-01-26   -0.089320
2018-01-27   -0.164370
2018-01-28   -0.110892
2018-01-29   -0.205786
2018-01-30   -0.101162
2018-01-31   -0.034760
2018-02-01    0.229333
2018-02-02    0.043741
2018-02-03    0.052837
2018-02-04    0.057746
2018-02-05   -0.071401
2018-02-06   -0.011153
2018-02-07   -0.045737
2018-02-08   -0.021983
2018-02-09   -0.196715
2018-02-10   -0.063721
2018-02-11   -0.289452
2018-02-12   -0.050946
2018-02-13   -0.047014
2018-02-14    0.048754
2018-02-15    0.143949
2018-02-16    0.424823
2018-02-17    0.361878
2018-02-18    0.363235
2018-02-19    0.517436
2018-02-20    0.368020
Freq: D, Length: 600, dtype: float64
##畫出結(jié)果
import matplotlib.pyplot as plt
%matplotlib inline

plt.figure(figsize=(15, 5))
##原先用紅色虛線
df.plot(style='r--')
##求玩均值用藍(lán)色折線
df.rolling(window=10).mean().plot(style='b')
圖例
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末冷离,一起剝皮案震驚了整個(gè)濱河市,隨后出現(xiàn)的幾起案子纯命,更是在濱河造成了極大的恐慌西剥,老刑警劉巖,帶你破解...
    沈念sama閱讀 223,002評(píng)論 6 519
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件亿汞,死亡現(xiàn)場(chǎng)離奇詭異蔫耽,居然都是意外死亡,警方通過(guò)查閱死者的電腦和手機(jī)留夜,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 95,357評(píng)論 3 400
  • 文/潘曉璐 我一進(jìn)店門匙铡,熙熙樓的掌柜王于貴愁眉苦臉地迎上來(lái),“玉大人碍粥,你說(shuō)我怎么就攤上這事鳖眼。” “怎么了嚼摩?”我有些...
    開封第一講書人閱讀 169,787評(píng)論 0 365
  • 文/不壞的土叔 我叫張陵钦讳,是天一觀的道長(zhǎng)。 經(jīng)常有香客問(wèn)我枕面,道長(zhǎng)愿卒,這世上最難降的妖魔是什么? 我笑而不...
    開封第一講書人閱讀 60,237評(píng)論 1 300
  • 正文 為了忘掉前任潮秘,我火速辦了婚禮琼开,結(jié)果婚禮上,老公的妹妹穿的比我還像新娘枕荞。我一直安慰自己柜候,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 69,237評(píng)論 6 398
  • 文/花漫 我一把揭開白布躏精。 她就那樣靜靜地躺著渣刷,像睡著了一般。 火紅的嫁衣襯著肌膚如雪矗烛。 梳的紋絲不亂的頭發(fā)上辅柴,一...
    開封第一講書人閱讀 52,821評(píng)論 1 314
  • 那天,我揣著相機(jī)與錄音,去河邊找鬼碌嘀。 笑死涣旨,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的筏餐。 我是一名探鬼主播开泽,決...
    沈念sama閱讀 41,236評(píng)論 3 424
  • 文/蒼蘭香墨 我猛地睜開眼,長(zhǎng)吁一口氣:“原來(lái)是場(chǎng)噩夢(mèng)啊……” “哼魁瞪!你這毒婦竟也來(lái)了穆律?” 一聲冷哼從身側(cè)響起,我...
    開封第一講書人閱讀 40,196評(píng)論 0 277
  • 序言:老撾萬(wàn)榮一對(duì)情侶失蹤导俘,失蹤者是張志新(化名)和其女友劉穎峦耘,沒想到半個(gè)月后,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體旅薄,經(jīng)...
    沈念sama閱讀 46,716評(píng)論 1 320
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡辅髓,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,794評(píng)論 3 343
  • 正文 我和宋清朗相戀三年,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了少梁。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片洛口。...
    茶點(diǎn)故事閱讀 40,928評(píng)論 1 353
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡,死狀恐怖凯沪,靈堂內(nèi)的尸體忽然破棺而出第焰,到底是詐尸還是另有隱情,我是刑警寧澤妨马,帶...
    沈念sama閱讀 36,583評(píng)論 5 351
  • 正文 年R本政府宣布挺举,位于F島的核電站,受9級(jí)特大地震影響烘跺,放射性物質(zhì)發(fā)生泄漏湘纵。R本人自食惡果不足惜,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 42,264評(píng)論 3 336
  • 文/蒙蒙 一滤淳、第九天 我趴在偏房一處隱蔽的房頂上張望梧喷。 院中可真熱鬧,春花似錦娇钱、人聲如沸伤柄。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,755評(píng)論 0 25
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽(yáng)。三九已至秤朗,卻和暖如春煤蹭,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背。 一陣腳步聲響...
    開封第一講書人閱讀 33,869評(píng)論 1 274
  • 我被黑心中介騙來(lái)泰國(guó)打工硝皂, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留常挚,地道東北人。 一個(gè)月前我還...
    沈念sama閱讀 49,378評(píng)論 3 379
  • 正文 我出身青樓稽物,卻偏偏與公主長(zhǎng)得像奄毡,于是被迫代替她去往敵國(guó)和親。 傳聞我的和親對(duì)象是個(gè)殘疾皇子贝或,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,937評(píng)論 2 361

推薦閱讀更多精彩內(nèi)容