Prove sqrt2 is an irrational number

Prove sqrt2 is an irrational number

1. Traditional method using contradiction

Assume sqrt2 is a rational number, so that sqrt2 = a/b, a and b are relatively prime integers.

sqrt2 = a/b => 2 =a2/b2 => 2b2 = a2
so that a2 is an even number, then a is an even number as well.
Therefore, we can let a = 2c => 2b2 =2(2C)2 => b2 = 4c2
so that b2 is an even number, then b is an even number as well.
Now both a and b are even number, they cannot be relatively prime, which is contrary to assumption: sqrt2 is a rational number, so that sqrt2 = a/b, a and b are relatively prime integers.

Therefore assumption is false, and sqrt2 is an irrational number.

2. Prove using strong induction

P(n) is the statement that sqrt2 =/= n/b for any positive integer b.

Basic step:

Prove P(1) is true

P(1) : 1/b <=1 <sqrt2, so that sqrt2 =/= 1/b, P(1) is true.

Inductive step:

We assume P(j) is true for all 1<=j<=k: sqrt2 =/= j/b, and we need prove P(k+1) is true as well: sqrt2 =/= (k+1)/b

We assume sqrt2 = (k+1)/b for some b. So that 2 = (k+1)2/b2 => 2b2 = (k+1)2
we can conclude that (k+1)2 is an even number and k+1 is an even number as well.

Let k+1 = 2c, 2b2 = (k+1)2 => 2b2 = (2c)2 => b2 = 2c2
we can conclude that b is an even number.

Let b = 2d, sqrt2 = (k+1)/b => sqrt2 = 2c/2d = c/d.
For sqrt2 = c/d, d is a positive integer, c<k for k>1 (since k+1 = 2c), this contradicts our previous assumption: We assume P(j) is true for all 1<=j<=k: sqrt2 =/= j/b.

Therefore our second assumption: We assume sqrt2 = (k+1)/b for some b. is false. We conclude sqrt2 =/= (k+1)/b for all positive integer b.

So that sqrt2 =/= n/b for any positive integer b, and sqrt2 is an irrational number.

2018/12/02

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末聊品,一起剝皮案震驚了整個(gè)濱河市灵莲,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌宏粤,老刑警劉巖,帶你破解...
    沈念sama閱讀 212,884評(píng)論 6 492
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件捕犬,死亡現(xiàn)場(chǎng)離奇詭異舍扰,居然都是意外死亡,警方通過查閱死者的電腦和手機(jī)侣诵,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 90,755評(píng)論 3 385
  • 文/潘曉璐 我一進(jìn)店門痢法,熙熙樓的掌柜王于貴愁眉苦臉地迎上來,“玉大人杜顺,你說我怎么就攤上這事财搁。” “怎么了躬络?”我有些...
    開封第一講書人閱讀 158,369評(píng)論 0 348
  • 文/不壞的土叔 我叫張陵尖奔,是天一觀的道長。 經(jīng)常有香客問我,道長提茁,這世上最難降的妖魔是什么淹禾? 我笑而不...
    開封第一講書人閱讀 56,799評(píng)論 1 285
  • 正文 為了忘掉前任,我火速辦了婚禮茴扁,結(jié)果婚禮上铃岔,老公的妹妹穿的比我還像新娘。我一直安慰自己峭火,他們只是感情好毁习,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,910評(píng)論 6 386
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著卖丸,像睡著了一般纺且。 火紅的嫁衣襯著肌膚如雪。 梳的紋絲不亂的頭發(fā)上坯苹,一...
    開封第一講書人閱讀 50,096評(píng)論 1 291
  • 那天隆檀,我揣著相機(jī)與錄音,去河邊找鬼粹湃。 笑死恐仑,一個(gè)胖子當(dāng)著我的面吹牛,可吹牛的內(nèi)容都是我干的为鳄。 我是一名探鬼主播裳仆,決...
    沈念sama閱讀 39,159評(píng)論 3 411
  • 文/蒼蘭香墨 我猛地睜開眼,長吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼孤钦!你這毒婦竟也來了歧斟?” 一聲冷哼從身側(cè)響起奢方,我...
    開封第一講書人閱讀 37,917評(píng)論 0 268
  • 序言:老撾萬榮一對(duì)情侶失蹤哮内,失蹤者是張志新(化名)和其女友劉穎凹联,沒想到半個(gè)月后侵俗,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 44,360評(píng)論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡伐割,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,673評(píng)論 2 327
  • 正文 我和宋清朗相戀三年妥箕,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了连躏。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片萨惑。...
    茶點(diǎn)故事閱讀 38,814評(píng)論 1 341
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡捐康,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出庸蔼,到底是詐尸還是另有隱情解总,我是刑警寧澤,帶...
    沈念sama閱讀 34,509評(píng)論 4 334
  • 正文 年R本政府宣布姐仅,位于F島的核電站花枫,受9級(jí)特大地震影響刻盐,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜乌昔,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 40,156評(píng)論 3 317
  • 文/蒙蒙 一隙疚、第九天 我趴在偏房一處隱蔽的房頂上張望壤追。 院中可真熱鬧磕道,春花似錦、人聲如沸行冰。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,882評(píng)論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽悼做。三九已至疯特,卻和暖如春,著一層夾襖步出監(jiān)牢的瞬間肛走,已是汗流浹背漓雅。 一陣腳步聲響...
    開封第一講書人閱讀 32,123評(píng)論 1 267
  • 我被黑心中介騙來泰國打工, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留朽色,地道東北人邻吞。 一個(gè)月前我還...
    沈念sama閱讀 46,641評(píng)論 2 362
  • 正文 我出身青樓,卻偏偏與公主長得像葫男,于是被迫代替她去往敵國和親抱冷。 傳聞我的和親對(duì)象是個(gè)殘疾皇子,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,728評(píng)論 2 351

推薦閱讀更多精彩內(nèi)容