前言
dyld全稱the dynamic link editor甜熔,即動態(tài)鏈接器,其本質是Mach-O文件,他是專門用來加載動態(tài)庫的庫盗痒。源碼可以從這里下載,本文采用的是| dyld-635.2 |
源碼進行分析低散。dyld位于/usr/lib/dyld
俯邓,可以從越獄機或者mac電腦中找到。以mac為例熔号,終端執(zhí)行如下命令:
cd /usr/lib/
file dyld
輸出為:
dyld: Mach-O universal binary with 2 architectures: [x86_64:Mach-O 64-bit dynamic linker x86_64] [i386:Mach-O dynamic linker i386]
dyld (for architecture x86_64): Mach-O 64-bit dynamic linker x86_64
dyld (for architecture i386): Mach-O dynamic linker i386
即看成,dyld是Mach-O類型的通用二進制文件,支持x86_64和i386兩種架構跨嘉。當然川慌,iPhone真機對應的dyld支持的為arm系列架構吃嘿。
- otool簡介
otool是專門用來查看Mach-O類型文件的工具,終端輸入otool
可以看到很多用法:
$ otool
Usage: /Library/Developer/CommandLineTools/usr/bin/otool [-arch arch_type] [-fahlLDtdorSTMRIHGvVcXmqQjCP] [-mcpu=arg] [--version] <object file> ...
-f print the fat headers
-a print the archive header
-h print the mach header
-l print the load commands
-L print shared libraries used
-D print shared library id name
-t print the text section (disassemble with -v)
-p <routine name> start dissassemble from routine name
-s <segname> <sectname> print contents of section
-d print the data section
-o print the Objective-C segment
-r print the relocation entries
-S print the table of contents of a library (obsolete)
-T print the table of contents of a dynamic shared library (obsolete)
-M print the module table of a dynamic shared library (obsolete)
-R print the reference table of a dynamic shared library (obsolete)
-I print the indirect symbol table
-H print the two-level hints table (obsolete)
-G print the data in code table
-v print verbosely (symbolically) when possible
-V print disassembled operands symbolically
-c print argument strings of a core file
-X print no leading addresses or headers
-m don't use archive(member) syntax
-B force Thumb disassembly (ARM objects only)
-q use llvm's disassembler (the default)
-Q use otool(1)'s disassembler
-mcpu=arg use `arg' as the cpu for disassembly
-j print opcode bytes
-P print the info plist section as strings
-C print linker optimization hints
--version print the version of /Library/Developer/CommandLineTools/usr/bin/otool
比如梦重,可以通過-L
來查看當前Mach-O所依賴的動態(tài)庫兑燥。如,常用的gcd依賴以下這些動態(tài)庫:
$ otool -L /usr/lib/system/libdispatch.dylib
/usr/lib/system/libdispatch.dylib:
/usr/lib/system/libdispatch.dylib (compatibility version 1.0.0, current version 1008.250.7)
/usr/lib/system/libsystem_darwin.dylib (compatibility version 1.0.0, current version 1.0.0)
/usr/lib/system/libdyld.dylib (compatibility version 1.0.0, current version 655.1.1)
/usr/lib/system/libcompiler_rt.dylib (compatibility version 1.0.0, current version 63.4.0)
/usr/lib/system/libsystem_kernel.dylib (compatibility version 1.0.0, current version 4903.255.45)
/usr/lib/system/libsystem_platform.dylib (compatibility version 1.0.0, current version 177.250.1)
/usr/lib/system/libsystem_pthread.dylib (compatibility version 1.0.0, current version 330.250.2)
/usr/lib/system/libsystem_malloc.dylib (compatibility version 1.0.0, current version 166.250.4)
/usr/lib/system/libsystem_c.dylib (compatibility version 1.0.0, current version 1272.250.1)
/usr/lib/system/libsystem_blocks.dylib (compatibility version 1.0.0, current version 73.0.0)
/usr/lib/system/libunwind.dylib (compatibility version 1.0.0, current version 35.4.0)
/usr/lib/libobjc.A.dylib (compatibility version 1.0.0, current version 228.0.0)
當然琴拧,也可以通過MachOView更加直觀的查看相關信息
dyld加載
動態(tài)庫的加載必然在main函數(shù)之前降瞳,而load方法的調用也在main之前,因此從這里入手蚓胸。新建工程挣饥,打上符號斷點[NSObject load]
,運行程序后如圖所示:
可見沛膳,load的加載是從_dyld_start這個函數(shù)開始的扔枫。_dyld_start對應匯編文件,內部調用dyldbootstrap::start锹安,位于dyldInitialization.cpp中:
//
// This is code to bootstrap dyld. This work in normally done for a program by dyld and crt.
// In dyld we have to do this manually.
//
uintptr_t start(const struct macho_header* appsMachHeader, int argc, const char* argv[],
intptr_t slide, const struct macho_header* dyldsMachHeader,
uintptr_t* startGlue)
{
// if kernel had to slide dyld, we need to fix up load sensitive locations
// we have to do this before using any global variables
slide = slideOfMainExecutable(dyldsMachHeader);
bool shouldRebase = slide != 0;
#if __has_feature(ptrauth_calls)
shouldRebase = true;
#endif
if ( shouldRebase ) {
rebaseDyld(dyldsMachHeader, slide);
}
// allow dyld to use mach messaging
mach_init();
// kernel sets up env pointer to be just past end of agv array
const char** envp = &argv[argc+1];
// kernel sets up apple pointer to be just past end of envp array
const char** apple = envp;
while(*apple != NULL) { ++apple; }
++apple;
// set up random value for stack canary
__guard_setup(apple);
#if DYLD_INITIALIZER_SUPPORT
// run all C++ initializers inside dyld
runDyldInitializers(dyldsMachHeader, slide, argc, argv, envp, apple);
#endif
// now that we are done bootstrapping dyld, call dyld's main
uintptr_t appsSlide = slideOfMainExecutable(appsMachHeader);
return dyld::_main(appsMachHeader, appsSlide, argc, argv, envp, apple, startGlue);
}
流程很簡單:獲取dyld對應的slide->通過slide對dyld進行rebase->mach初始化->棧溢出保護->獲取應用的slide(appsSlide)->調用dyld的main函數(shù)
slide與rebase
由于apple采用了ASLR(Address space layout randomization)技術短荐,所以Mach-O每次加載到內存中的首地址是變化的,此時想找到代碼在內存中對應的地址需要重定位rebase叹哭。rebase要用到slide值忍宋,那么slide如何計算?
static uintptr_t slideOfMainExecutable(const struct macho_header* mh)
{
const uint32_t cmd_count = mh->ncmds;
const struct load_command* const cmds = (struct load_command*)(((char*)mh)+sizeof(macho_header));
const struct load_command* cmd = cmds;
for (uint32_t i = 0; i < cmd_count; ++i) {
if ( cmd->cmd == LC_SEGMENT_COMMAND ) {
const struct macho_segment_command* segCmd = (struct macho_segment_command*)cmd;
if ( (segCmd->fileoff == 0) && (segCmd->filesize != 0)) {
return (uintptr_t)mh - segCmd->vmaddr;
}
}
cmd = (const struct load_command*)(((char*)cmd)+cmd->cmdsize);
}
return 0;
}
intptr_t _dyld_get_image_vmaddr_slide(uint32_t imageIndex)
{
log_apis("_dyld_get_image_vmaddr_slide(%d)\n", imageIndex);
const mach_header* mh = gAllImages.imageLoadAddressByIndex(imageIndex);
if ( mh != nullptr )
return dyld3::_dyld_get_image_slide(mh);
return 0;
}
intptr_t _dyld_get_image_slide(const mach_header* mh)
{
log_apis("_dyld_get_image_slide(%p)\n", mh);
const MachOLoaded* mf = (MachOLoaded*)mh;
if ( !mf->hasMachOMagic() )
return 0;
return mf->getSlide();
}
intptr_t MachOLoaded::getSlide() const
{
Diagnostics diag;
__block intptr_t slide = 0;
forEachLoadCommand(diag, ^(const load_command* cmd, bool& stop) {
if ( cmd->cmd == LC_SEGMENT_64 ) {
const segment_command_64* seg = (segment_command_64*)cmd;
if ( strcmp(seg->segname, "__TEXT") == 0 ) {
slide = (uintptr_t)(((uint64_t)this) - seg->vmaddr);
stop = true;
}
}
else if ( cmd->cmd == LC_SEGMENT ) {
const segment_command* seg = (segment_command*)cmd;
if ( strcmp(seg->segname, "__TEXT") == 0 ) {
slide = (uintptr_t)(((uint64_t)this) - seg->vmaddr);
stop = true;
}
}
});
diag.assertNoError(); // any malformations in the file should have been caught by earlier validate() call
return slide;
}
由于應用本身的Mach-O及dyld的特殊性风罩,這兩個采用的是slideOfMainExecutable的方式獲取slide糠排,而動態(tài)庫加載采用的是_dyld_get_image_vmaddr_slide的方式獲取slide。
對比后不難發(fā)現(xiàn):
slide = mh首地址 - load_command中__TEXT
段中vmaddr
的值(slideOfMainExecutable方式中以(segCmd->fileoff == 0) && (segCmd->filesize != 0)
為條件超升,對于應用本身Mach-O及dyld乳讥,此時也是對應__TEXT
段)
簡單驗證一下,以應用Mach-O為例:
可以看到廓俭,Mach-O
的地址為0x101321000(16進制)云石,VM Address
的地址為4294967296(十進制,對應16進制為0x100000000)研乒。當然汹忠,也可以通過命令行直接獲取slide的值,這里為了方便理解雹熬,采用手動計算
image list -o -f
1宽菜、用Mach-O的內存地址減去對應虛擬地址,得到20058112(十進制)為slide的值
2竿报、獲取viewDidLoad
函數(shù)在當前內存中的地址
3铅乡、用viewDidLoad
內存地址減去slide得到Mach-O中對應的虛擬地址
4、將虛擬地址轉化為16進制
可以看到烈菌,最終計算出的值0x100001750與在Mach-O中看到的值一致
dyld::_main
對ASLR
有個基本認知后阵幸,接著看dyld中的main干了什么花履。由于內部代碼過長,此處先貼出流程再逐步分析:設置運行環(huán)境->加載共享緩存->實例化主程序->加載插入的動態(tài)庫->鏈接主程序->鏈接插入的動態(tài)庫->執(zhí)行弱符號綁定->執(zhí)行初始化方法->查找入口點并返回
- 設置運行環(huán)境
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide,
int argc, const char* argv[], const char* envp[], const char* apple[],
uintptr_t* startGlue)
{
...
// Grab the cdHash of the main executable from the environment
uint8_t mainExecutableCDHashBuffer[20];
const uint8_t* mainExecutableCDHash = nullptr;
if ( hexToBytes(_simple_getenv(apple, "executable_cdhash"), 40, mainExecutableCDHashBuffer) )
// 獲取主程序hash
mainExecutableCDHash = mainExecutableCDHashBuffer;
// Trace dyld's load
// 告知kernel挚赊,dyld已加載
notifyKernelAboutImage((macho_header*)&__dso_handle, _simple_getenv(apple, "dyld_file"));
#if !TARGET_IPHONE_SIMULATOR
// Trace the main executable's load
// 告知kernel诡壁,主程序Mach-O已加載
notifyKernelAboutImage(mainExecutableMH, _simple_getenv(apple, "executable_file"));
#endif
uintptr_t result = 0;
sMainExecutableMachHeader = mainExecutableMH;
sMainExecutableSlide = mainExecutableSlide;
#if __MAC_OS_X_VERSION_MIN_REQUIRED
// if this is host dyld, check to see if iOS simulator is being run
// 獲取dyld路徑
const char* rootPath = _simple_getenv(envp, "DYLD_ROOT_PATH");
if ( (rootPath != NULL) ) {
// look to see if simulator has its own dyld
char simDyldPath[PATH_MAX];
strlcpy(simDyldPath, rootPath, PATH_MAX);
strlcat(simDyldPath, "/usr/lib/dyld_sim", PATH_MAX);
int fd = my_open(simDyldPath, O_RDONLY, 0);
if ( fd != -1 ) {
// 如果是模擬器,并且正確加載`dyld_sim`荠割,則直接返回主程序地址
const char* errMessage = useSimulatorDyld(fd, mainExecutableMH, simDyldPath, argc, argv, envp, apple, startGlue, &result);
if ( errMessage != NULL )
halt(errMessage);
return result;
}
}
#endif
CRSetCrashLogMessage("dyld: launch started");
// 設置上下文
setContext(mainExecutableMH, argc, argv, envp, apple);
// Pickup the pointer to the exec path.
// 獲取主程序路徑
sExecPath = _simple_getenv(apple, "executable_path");
// <rdar://problem/13868260> Remove interim apple[0] transition code from dyld
if (!sExecPath) sExecPath = apple[0];
// 獲取Mach-O絕對路徑
if ( sExecPath[0] != '/' ) {
// have relative path, use cwd to make absolute
char cwdbuff[MAXPATHLEN];
if ( getcwd(cwdbuff, MAXPATHLEN) != NULL ) {
// maybe use static buffer to avoid calling malloc so early...
char* s = new char[strlen(cwdbuff) + strlen(sExecPath) + 2];
strcpy(s, cwdbuff);
strcat(s, "/");
strcat(s, sExecPath);
sExecPath = s;
}
}
// Remember short name of process for later logging
// 設置進程名稱
sExecShortName = ::strrchr(sExecPath, '/');
if ( sExecShortName != NULL )
++sExecShortName;
else
sExecShortName = sExecPath;
// 配置進程受限模式
configureProcessRestrictions(mainExecutableMH);
// 再次檢測/設置上下文環(huán)境
#if __MAC_OS_X_VERSION_MIN_REQUIRED
if ( !gLinkContext.allowEnvVarsPrint && !gLinkContext.allowEnvVarsPath && !gLinkContext.allowEnvVarsSharedCache ) {
pruneEnvironmentVariables(envp, &apple);
// set again because envp and apple may have changed or moved
setContext(mainExecutableMH, argc, argv, envp, apple);
}
else
#endif
{
checkEnvironmentVariables(envp);
defaultUninitializedFallbackPaths(envp);
}
...
// 如果設置了DYLD_PRINT_OPTS妹卿,則打印參數(shù)
if ( sEnv.DYLD_PRINT_OPTS )
printOptions(argv);
// 如果設置了DYLD_PRINT_ENV,則打印環(huán)境變量
if ( sEnv.DYLD_PRINT_ENV )
printEnvironmentVariables(envp);
// 獲取主程序架構信息
getHostInfo(mainExecutableMH, mainExecutableSlide);
}
通過源碼可以看到蔑鹦,如果是模擬器運行的程序夺克,其實是通過dyld_sim
來進行后續(xù)加載工作的,與正常真機加載流程略有不同嚎朽,具體實現(xiàn)在useSimulatorDyld
這個函數(shù)中铺纽,本文不做進一步解析。不難看出火鼻,模擬器比真機多加載一個dyld_sim
。
這里還有一個知識點雕崩,環(huán)境變量DYLD_PRINT_OPTS
與DYLD_PRINT_ENV
添加這兩個環(huán)境變量魁索,對應的字段會被設置為true,可以看到盼铁,這里并不需要設置value
輸出如下:
但是并非每個環(huán)境變量都不需要配置value粗蔚,如:
void processDyldEnvironmentVariable(const char* key, const char* value, const char* mainExecutableDir)
{
if ( strcmp(key, "DYLD_FRAMEWORK_PATH") == 0 ) {
appendParsedColonList(value, mainExecutableDir, &sEnv.DYLD_FRAMEWORK_PATH);
}
else if ( strcmp(key, "DYLD_FALLBACK_FRAMEWORK_PATH") == 0 ) {
appendParsedColonList(value, mainExecutableDir, &sEnv.DYLD_FALLBACK_FRAMEWORK_PATH);
}
else if ( strcmp(key, "DYLD_LIBRARY_PATH") == 0 ) {
appendParsedColonList(value, mainExecutableDir, &sEnv.DYLD_LIBRARY_PATH);
}
else if ( strcmp(key, "DYLD_FALLBACK_LIBRARY_PATH") == 0 ) {
appendParsedColonList(value, mainExecutableDir, &sEnv.DYLD_FALLBACK_LIBRARY_PATH);
}
...
}
這些環(huán)境變量是需要配置value的,更多可配置的環(huán)境變量可從processDyldEnvironmentVariable
函數(shù)中找到
- 加載共享緩存
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide,
int argc, const char* argv[], const char* envp[], const char* apple[],
uintptr_t* startGlue)
{
...
// load shared cache
// 檢測共享緩存是否可用
checkSharedRegionDisable((dyld3::MachOLoaded*)mainExecutableMH, mainExecutableSlide);
#if TARGET_IPHONE_SIMULATOR
// <HACK> until <rdar://30773711> is fixed
gLinkContext.sharedRegionMode = ImageLoader::kUsePrivateSharedRegion;
// </HACK>
#endif
if ( gLinkContext.sharedRegionMode != ImageLoader::kDontUseSharedRegion ) {
// 映射共享緩存到共享區(qū)
mapSharedCache();
}
...
#if !TARGET_IPHONE_SIMULATOR
#ifdef WAIT_FOR_SYSTEM_ORDER_HANDSHAKE
// <rdar://problem/6849505> Add gating mechanism to dyld support system order file generation process
WAIT_FOR_SYSTEM_ORDER_HANDSHAKE(dyld::gProcessInfo->systemOrderFlag);
#endif
#endif
try {
// add dyld itself to UUID list
// 添加dyld的UUID到共享緩存UUID列表中
addDyldImageToUUIDList();
...
}
#endif
...
}
這部分流程也很簡單:檢測共享緩存是否可用->如果可用饶火,映射共享緩存到共享區(qū)->添加dyld的UUID到緩存列表
其中鹏控,檢測共享緩存是否可用checkSharedRegionDisable
這個函數(shù)中有兩句注釋:
// if main executable has segments that overlap the shared region, then disable using the shared region
// iOS cannot run without shared region
意思是:如果主程序Mach-O有segments與共享區(qū)重疊,那么共享區(qū)不可用肤寝。并且当辐,iOS不開啟共享區(qū)無法運行。
看下是如何檢測這兩者是否重疊的:
...
// 調用
mainExecutableMH->intersectsRange(SHARED_REGION_BASE, SHARED_REGION_SIZE)
...
bool MachOLoaded::intersectsRange(uintptr_t start, uintptr_t length) const
{
__block bool result = false;
uintptr_t slide = getSlide();
forEachSegment(^(const SegmentInfo& info, bool& stop) {
if ( (info.vmAddr+info.vmSize+slide >= start) && (info.vmAddr+slide < start+length) )
result = true;
});
return result;
}
如果主程序segment中的虛擬地址+虛擬地址+偏移量 >= 共享區(qū)起始地址
并且主程序segment中的虛擬地址 + 偏移量 < 共享區(qū)終止地址
鲤看,那么認為主程序Mach-O有segments與共享區(qū)重疊缘揪,此時共享區(qū)不可用,從而動態(tài)庫緩存不可用
疑問:可以看到這段檢測代碼在滿足重疊條件后义桂,并沒有將stop設為true找筝,所以源碼其實是檢測Mach-O最后一段segment與共享區(qū)是否重疊,但之前的每個segment都計算了一次慷吊。這里是否在滿足重疊條件后將stop設為true跳出循環(huán)袖裕,或者只檢測最后一段segment都比原方法更好?
加載共享緩存最核心的步驟在mapSharedCache
中:
static void mapSharedCache()
{
dyld3::SharedCacheOptions opts;
opts.cacheDirOverride = sSharedCacheOverrideDir;
opts.forcePrivate = (gLinkContext.sharedRegionMode == ImageLoader::kUsePrivateSharedRegion);
#if __x86_64__ && !TARGET_IPHONE_SIMULATOR
opts.useHaswell = sHaswell;
#else
opts.useHaswell = false;
#endif
opts.verbose = gLinkContext.verboseMapping;
loadDyldCache(opts, &sSharedCacheLoadInfo);
// update global state
if ( sSharedCacheLoadInfo.loadAddress != nullptr ) {
gLinkContext.dyldCache = sSharedCacheLoadInfo.loadAddress;
dyld::gProcessInfo->processDetachedFromSharedRegion = opts.forcePrivate;
dyld::gProcessInfo->sharedCacheSlide = sSharedCacheLoadInfo.slide;
dyld::gProcessInfo->sharedCacheBaseAddress = (unsigned long)sSharedCacheLoadInfo.loadAddress;
sSharedCacheLoadInfo.loadAddress->getUUID(dyld::gProcessInfo->sharedCacheUUID);
dyld3::kdebug_trace_dyld_image(DBG_DYLD_UUID_SHARED_CACHE_A, (const uuid_t *)&dyld::gProcessInfo->sharedCacheUUID[0], {0,0}, {{ 0, 0 }}, (const mach_header *)sSharedCacheLoadInfo.loadAddress);
}
//#if __IPHONE_OS_VERSION_MIN_REQUIRED && !TARGET_IPHONE_SIMULATOR
// RAM disk booting does not have shared cache yet
// Don't make lack of a shared cache fatal in that case
// if ( sSharedCacheLoadInfo.loadAddress == nullptr ) {
// if ( sSharedCacheLoadInfo.errorMessage != nullptr )
// halt(sSharedCacheLoadInfo.errorMessage);
// else
// halt("error loading dyld shared cache");
// }
//#endif
}
bool loadDyldCache(const SharedCacheOptions& options, SharedCacheLoadInfo* results)
{
results->loadAddress = 0;
results->slide = 0;
results->errorMessage = nullptr;
#if TARGET_IPHONE_SIMULATOR
// simulator only supports mmap()ing cache privately into process
return mapCachePrivate(options, results);
#else
if ( options.forcePrivate ) {
// mmap cache into this process only
return mapCachePrivate(options, results);
}
else {
// fast path: when cache is already mapped into shared region
bool hasError = false;
if ( reuseExistingCache(options, results) ) {
hasError = (results->errorMessage != nullptr);
} else {
// slow path: this is first process to load cache
hasError = mapCacheSystemWide(options, results);
}
return hasError;
}
#endif
}
可以看到溉瓶,加載緩存分三種情況:
1急鳄、僅加載到當前進程谤民,通過mapCachePrivate
加載并返回錯誤信息
2、已經(jīng)加載過的攒岛,僅獲取加載錯誤信息并返回
3赖临、未加載過的,通過mapCacheSystemWide
加載并返回錯誤信息
當options.forcePrivate
為true或者模擬器運行時灾锯,僅加載到當前進程兢榨。而options.forcePrivate的值是這么定義的:
opts.forcePrivate = (gLinkContext.sharedRegionMode == ImageLoader::kUsePrivateSharedRegion)
enum SharedRegionMode { kUseSharedRegion, kUsePrivateSharedRegion, kDontUseSharedRegion, kSharedRegionIsSharedCache };
gLinkContext.sharedRegionMode
就是之前檢測共享區(qū)是否可用的標識值,可以看到默認值為kUseSharedRegion
- 實例化主程序
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide,
int argc, const char* argv[], const char* envp[], const char* apple[],
uintptr_t* startGlue)
{
...
try {
...
CRSetCrashLogMessage(sLoadingCrashMessage);
// instantiate ImageLoader for main executable
// 實例化主程序
sMainExecutable = instantiateFromLoadedImage(mainExecutableMH, mainExecutableSlide, sExecPath);
gLinkContext.mainExecutable = sMainExecutable;
gLinkContext.mainExecutableCodeSigned = hasCodeSignatureLoadCommand(mainExecutableMH);
#if TARGET_IPHONE_SIMULATOR
// check main executable is not too new for this OS
// 檢測主程序是否支持當前設備版本
{
if ( ! isSimulatorBinary((uint8_t*)mainExecutableMH, sExecPath) ) {
throwf("program was built for a platform that is not supported by this runtime");
}
uint32_t mainMinOS = sMainExecutable->minOSVersion();
// dyld is always built for the current OS, so we can get the current OS version
// from the load command in dyld itself.
uint32_t dyldMinOS = ImageLoaderMachO::minOSVersion((const mach_header*)&__dso_handle);
if ( mainMinOS > dyldMinOS ) {
#if TARGET_OS_WATCH
throwf("app was built for watchOS %d.%d which is newer than this simulator %d.%d",
mainMinOS >> 16, ((mainMinOS >> 8) & 0xFF),
dyldMinOS >> 16, ((dyldMinOS >> 8) & 0xFF));
#elif TARGET_OS_TV
throwf("app was built for tvOS %d.%d which is newer than this simulator %d.%d",
mainMinOS >> 16, ((mainMinOS >> 8) & 0xFF),
dyldMinOS >> 16, ((dyldMinOS >> 8) & 0xFF));
#else
throwf("app was built for iOS %d.%d which is newer than this simulator %d.%d",
mainMinOS >> 16, ((mainMinOS >> 8) & 0xFF),
dyldMinOS >> 16, ((dyldMinOS >> 8) & 0xFF));
#endif
}
}
}
#endif
...
// dyld_all_image_infos image list does not contain dyld
// add it as dyldPath field in dyld_all_image_infos
// for simulator, dyld_sim is in image list, need host dyld added
#if TARGET_IPHONE_SIMULATOR
// get path of host dyld from table of syscall vectors in host dyld
void* addressInDyld = gSyscallHelpers;
#else
// get path of dyld itself
void* addressInDyld = (void*)&__dso_handle;
#endif
// 獲取dyld路徑并與gProcessInfo->dyldPath對比
// 如果不同將獲取到的路徑復制給gProcessInfo->dyldPath
char dyldPathBuffer[MAXPATHLEN+1];
int len = proc_regionfilename(getpid(), (uint64_t)(long)addressInDyld, dyldPathBuffer, MAXPATHLEN);
if ( len > 0 ) {
dyldPathBuffer[len] = '\0'; // proc_regionfilename() does not zero terminate returned string
if ( strcmp(dyldPathBuffer, gProcessInfo->dyldPath) != 0 )
gProcessInfo->dyldPath = strdup(dyldPathBuffer);
}
...
}
這一步流程為:實例化主程序->檢測主程序是否支持當前設備版本->檢測進程信息中dyld路徑是否與dyld路徑相符顺饮,若不符則重新賦值
源碼中有這樣一段注釋:
// dyld_all_image_infos image list does not contain dyld
// add it as dyldPath field in dyld_all_image_infos
// for simulator, dyld_sim is in image list, need host dyld added
就是說吵聪,dyld加載的image_infos并不包含dyld本身,他被放到dyld_all_image_infos
的dyldPath
字段中去了兼雄。而對于模擬器吟逝,dyld加載的image_infos是包含dyld_sim的。
dyld_all_image_infos是個結構體赦肋,同樣分為32位及64位兩個版本块攒,分別對應dyld_all_image_infos_32
與dyld_all_image_infos_64
,由于獲取dyld_all_image_infos需要用到一些未開源信息佃乘,這里為了方便囱井,從側面驗證一下這條注釋信息:
- (void)viewDidLoad {
[super viewDidLoad];
for (uint32_t i = 0; i < _dyld_image_count(); ++i) {
NSLog(@"%s", _dyld_get_image_name(i));
}
}
可以看到,真機打印出的加載image中并沒有dyld趣避,第0個image是主程序庞呕。同樣,模擬器對應打印的image也沒有dyld程帕,第0個image是dyld_sim住练,第一個image才是主程序
回到最核心的instantiateFromLoadedImage
函數(shù),實例化主程序:
// The kernel maps in main executable before dyld gets control. We need to
// make an ImageLoader* for the already mapped in main executable.
static ImageLoaderMachO* instantiateFromLoadedImage(const macho_header* mh, uintptr_t slide, const char* path)
{
// try mach-o loader
if ( isCompatibleMachO((const uint8_t*)mh, path) ) {
ImageLoader* image = ImageLoaderMachO::instantiateMainExecutable(mh, slide, path, gLinkContext);
addImage(image);
return (ImageLoaderMachO*)image;
}
throw "main executable not a known format";
}
從注釋及源碼可以看到愁拭,kernel在dyld之前已經(jīng)加載了主程序Mach-O讲逛,dyld判斷Mach-O的兼容性后,實例化成ImageLoader加載到內存中交給dyld管理
// create image for main executable
ImageLoader* ImageLoaderMachO::instantiateMainExecutable(const macho_header* mh, uintptr_t slide, const char* path, const LinkContext& context)
{
//dyld::log("ImageLoader=%ld, ImageLoaderMachO=%ld, ImageLoaderMachOClassic=%ld, ImageLoaderMachOCompressed=%ld\n",
// sizeof(ImageLoader), sizeof(ImageLoaderMachO), sizeof(ImageLoaderMachOClassic), sizeof(ImageLoaderMachOCompressed));
bool compressed;
unsigned int segCount;
unsigned int libCount;
const linkedit_data_command* codeSigCmd;
const encryption_info_command* encryptCmd;
sniffLoadCommands(mh, path, false, &compressed, &segCount, &libCount, context, &codeSigCmd, &encryptCmd);
// instantiate concrete class based on content of load commands
if ( compressed )
return ImageLoaderMachOCompressed::instantiateMainExecutable(mh, slide, path, segCount, libCount, context);
else
#if SUPPORT_CLASSIC_MACHO
return ImageLoaderMachOClassic::instantiateMainExecutable(mh, slide, path, segCount, libCount, context);
#else
throw "missing LC_DYLD_INFO load command";
#endif
}
instantiateMainExecutable
內部調用sniffLoadCommands
岭埠,這個函數(shù)會對主程序Mach-O進行一系列的校驗妆绞。從函數(shù)名也可以看出,這里的校驗并不包括對主程序Mach-O的解密操作枫攀,這個操作是由xnu完成的括饶。
可以看到,當compressed為true時来涨,通過ImageLoaderMachOCompressed::instantiateMainExecutable
初始化图焰,否則通過ImageLoaderMachOClassic::instantiateMainExecutable
初始化。其實兩者內部的邏輯相同蹦掐,只是返回類型一個是ImageLoaderMachOCompressed一個是ImageLoaderMachOClassic而已技羔。
以ImageLoaderMachOCompressed為例:
// create image for main executable
ImageLoaderMachOCompressed* ImageLoaderMachOCompressed::instantiateMainExecutable(const macho_header* mh, uintptr_t slide, const char* path,
unsigned int segCount, unsigned int libCount, const LinkContext& context)
{
// 初始化image
ImageLoaderMachOCompressed* image = ImageLoaderMachOCompressed::instantiateStart(mh, path, segCount, libCount);
// set slide for PIE programs
// 設置image偏移量
image->setSlide(slide);
// for PIE record end of program, to know where to start loading dylibs
if ( slide != 0 )
// 設置動態(tài)庫起始地址
fgNextPIEDylibAddress = (uintptr_t)image->getEnd();
// 禁用段覆蓋檢測
image->disableCoverageCheck();
// 結束image上下文
image->instantiateFinish(context);
// 設置image加載狀態(tài)為dyld_image_state_mapped
image->setMapped(context);
if ( context.verboseMapping ) {
dyld::log("dyld: Main executable mapped %s\n", path);
for(unsigned int i=0, e=image->segmentCount(); i < e; ++i) {
const char* name = image->segName(i);
if ( (strcmp(name, "__PAGEZERO") == 0) || (strcmp(name, "__UNIXSTACK") == 0) )
dyld::log("%18s at 0x%08lX->0x%08lX\n", name, image->segPreferredLoadAddress(i), image->segPreferredLoadAddress(i)+image->segSize(i));
else
dyld::log("%18s at 0x%08lX->0x%08lX\n", name, image->segActualLoadAddress(i), image->segActualEndAddress(i));
}
}
return image;
}
此處流程為:初始化image->設置image偏移量->設置動態(tài)庫起始地址->禁用段覆蓋檢測->結束image上下文->設置image加載狀態(tài)為dyld_image_state_mapped僵闯,并調用notifySingle進行處理
其中,結束image上下文內部做了:解析loadCmds藤滥、設置動態(tài)庫連接信息鳖粟、設置符號表相關信息等
- 加載插入的動態(tài)庫
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide,
int argc, const char* argv[], const char* envp[], const char* apple[],
uintptr_t* startGlue)
{
...
// load any inserted libraries
// 插入動態(tài)庫
if ( sEnv.DYLD_INSERT_LIBRARIES != NULL ) {
for (const char* const* lib = sEnv.DYLD_INSERT_LIBRARIES; *lib != NULL; ++lib)
loadInsertedDylib(*lib);
}
// record count of inserted libraries so that a flat search will look at
// inserted libraries, then main, then others.
// 記錄插入的動態(tài)庫個數(shù)
sInsertedDylibCount = sAllImages.size()-1;
...
}
如果配置了DYLD_INSERT_LIBRARIES
環(huán)境變量,通過loadInsertedDylib
插入配置的動態(tài)庫拙绊。對于越獄插件而言向图,其實就是添加DYLD_INSERT_LIBRARIES
這個環(huán)境變量達到加載插件的目的
static void loadInsertedDylib(const char* path)
{
ImageLoader* image = NULL;
unsigned cacheIndex;
try {
LoadContext context;
context.useSearchPaths = false;
context.useFallbackPaths = false;
context.useLdLibraryPath = false;
context.implicitRPath = false;
context.matchByInstallName = false;
context.dontLoad = false;
context.mustBeBundle = false;
context.mustBeDylib = true;
context.canBePIE = false;
context.enforceIOSMac = true;
context.origin = NULL; // can't use @loader_path with DYLD_INSERT_LIBRARIES
context.rpath = NULL;
image = load(path, context, cacheIndex);
}
catch (const char* msg) {
if ( gLinkContext.allowInsertFailures )
dyld::log("dyld: warning: could not load inserted library '%s' into hardened process because %s\n", path, msg);
else
halt(dyld::mkstringf("could not load inserted library '%s' because %s\n", path, msg));
}
catch (...) {
halt(dyld::mkstringf("could not load inserted library '%s'\n", path));
}
}
內部構建context后調用load
函數(shù)生成image
ImageLoader* load(const char* path, const LoadContext& context, unsigned& cacheIndex)
{
...
// try all path permutations and check against existing loaded images
ImageLoader* image = loadPhase0(path, orgPath, context, cacheIndex, NULL);
if ( image != NULL ) {
CRSetCrashLogMessage2(NULL);
return image;
}
// try all path permutations and try open() until first success
std::vector<const char*> exceptions;
image = loadPhase0(path, orgPath, context, cacheIndex, &exceptions);
#if !TARGET_IPHONE_SIMULATOR
// <rdar://problem/16704628> support symlinks on disk to a path in dyld shared cache
if ( image == NULL)
image = loadPhase2cache(path, orgPath, context, cacheIndex, &exceptions);
#endif
CRSetCrashLogMessage2(NULL);
if ( image != NULL ) {
// <rdar://problem/6916014> leak in dyld during dlopen when using DYLD_ variables
for (std::vector<const char*>::iterator it = exceptions.begin(); it != exceptions.end(); ++it) {
free((void*)(*it));
}
// if loaded image is not from cache, but original path is in cache
// set gSharedCacheOverridden flag to disable some ObjC optimizations
if ( !gSharedCacheOverridden && !image->inSharedCache() && image->isDylib() && cacheablePath(path) && inSharedCache(path) ) {
gSharedCacheOverridden = true;
}
return image;
}
...
}
可以看到,先調用了loadPhase0
查找image标沪,如果沒找到再調用loadPhase2cache
查找image榄攀。其實內部有一整套loadPhase0~loadPhase6的流程來查找及加載image,如果在共享緩存中找到則直接調用instantiateFromCache 實例化image金句,否則通過loadPhase5open打開文件并調用loadPhase6檩赢,內部通過instantiateFromFile實例化image,最后再調用checkandAddImage將image加載進內存
- 鏈接主程序
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide,
int argc, const char* argv[], const char* envp[], const char* apple[],
uintptr_t* startGlue)
{
...
// link main executable
gLinkContext.linkingMainExecutable = true;
#if SUPPORT_ACCELERATE_TABLES
if ( mainExcutableAlreadyRebased ) {
// previous link() on main executable has already adjusted its internal pointers for ASLR
// work around that by rebasing by inverse amount
sMainExecutable->rebase(gLinkContext, -mainExecutableSlide);
}
#endif
// 鏈接主程序
link(sMainExecutable, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
sMainExecutable->setNeverUnloadRecursive();
if ( sMainExecutable->forceFlat() ) {
gLinkContext.bindFlat = true;
gLinkContext.prebindUsage = ImageLoader::kUseNoPrebinding;
}
...
}
可以看到违寞,主程序的鏈接是通過link
這個函數(shù)完成的:
void ImageLoader::link(const LinkContext& context, bool forceLazysBound, bool preflightOnly, bool neverUnload, const RPathChain& loaderRPaths, const char* imagePath)
{
//dyld::log("ImageLoader::link(%s) refCount=%d, neverUnload=%d\n", imagePath, fDlopenReferenceCount, fNeverUnload);
// clear error strings
(*context.setErrorStrings)(0, NULL, NULL, NULL);
uint64_t t0 = mach_absolute_time();
// 遞歸加載主程序依賴的庫
this->recursiveLoadLibraries(context, preflightOnly, loaderRPaths, imagePath);
context.notifyBatch(dyld_image_state_dependents_mapped, preflightOnly);
// we only do the loading step for preflights
if ( preflightOnly )
return;
uint64_t t1 = mach_absolute_time();
// 清空image層級關系
context.clearAllDepths();
// 遞歸更新image層級關系
this->recursiveUpdateDepth(context.imageCount());
__block uint64_t t2, t3, t4, t5;
{
dyld3::ScopedTimer(DBG_DYLD_TIMING_APPLY_FIXUPS, 0, 0, 0);
t2 = mach_absolute_time();
// 遞歸進行rebase
this->recursiveRebase(context);
context.notifyBatch(dyld_image_state_rebased, false);
t3 = mach_absolute_time();
if ( !context.linkingMainExecutable )
// 遞歸綁定符號表
this->recursiveBindWithAccounting(context, forceLazysBound, neverUnload);
t4 = mach_absolute_time();
if ( !context.linkingMainExecutable )
// 綁定弱符號表
this->weakBind(context);
t5 = mach_absolute_time();
}
if ( !context.linkingMainExecutable )
context.notifyBatch(dyld_image_state_bound, false);
uint64_t t6 = mach_absolute_time();
std::vector<DOFInfo> dofs;
// 遞歸獲取dof信息
this->recursiveGetDOFSections(context, dofs);
// 注冊dofs信息
context.registerDOFs(dofs);
uint64_t t7 = mach_absolute_time();
// interpose any dynamically loaded images
if ( !context.linkingMainExecutable && (fgInterposingTuples.size() != 0) ) {
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_APPLY_INTERPOSING, 0, 0, 0);
// 遞歸應用插入的動態(tài)庫
this->recursiveApplyInterposing(context);
}
// clear error strings
(*context.setErrorStrings)(0, NULL, NULL, NULL);
fgTotalLoadLibrariesTime += t1 - t0;
fgTotalRebaseTime += t3 - t2;
fgTotalBindTime += t4 - t3;
fgTotalWeakBindTime += t5 - t4;
fgTotalDOF += t7 - t6;
// done with initial dylib loads
fgNextPIEDylibAddress = 0;
}
內部加載動態(tài)庫贞瞒、rebase、綁定符號表趁曼、注冊dofs信息等军浆,同時還計算各步驟的耗時。如果想獲取這些耗時彰阴,只需要在環(huán)境變量中添加DYLD_PRINT_STATISTICS
就可以了瘾敢,同樣拍冠,這個環(huán)境變量也不需要value
- 鏈接插入的動態(tài)庫
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide,
int argc, const char* argv[], const char* envp[], const char* apple[],
uintptr_t* startGlue)
{
...
// link any inserted libraries
// do this after linking main executable so that any dylibs pulled in by inserted
// dylibs (e.g. libSystem) will not be in front of dylibs the program uses
if ( sInsertedDylibCount > 0 ) {
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
link(image, sEnv.DYLD_BIND_AT_LAUNCH, true, ImageLoader::RPathChain(NULL, NULL), -1);
image->setNeverUnloadRecursive();
}
// only INSERTED libraries can interpose
// register interposing info after all inserted libraries are bound so chaining works
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
image->registerInterposing(gLinkContext);
}
}
...
// apply interposing to initial set of images
for(int i=0; i < sImageRoots.size(); ++i) {
sImageRoots[i]->applyInterposing(gLinkContext);
}
ImageLoader::applyInterposingToDyldCache(gLinkContext);
gLinkContext.linkingMainExecutable = false;
// Bind and notify for the main executable now that interposing has been registered
uint64_t bindMainExecutableStartTime = mach_absolute_time();
sMainExecutable->recursiveBindWithAccounting(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
uint64_t bindMainExecutableEndTime = mach_absolute_time();
ImageLoaderMachO::fgTotalBindTime += bindMainExecutableEndTime - bindMainExecutableStartTime;
gLinkContext.notifyBatch(dyld_image_state_bound, false);
// Bind and notify for the inserted images now interposing has been registered
if ( sInsertedDylibCount > 0 ) {
for(unsigned int i=0; i < sInsertedDylibCount; ++i) {
ImageLoader* image = sAllImages[i+1];
image->recursiveBind(gLinkContext, sEnv.DYLD_BIND_AT_LAUNCH, true);
}
}
...
}
這里很簡單尿这,從加載的images中取出image,重復前面的link操作進行連接庆杜。registerInterposing
內部會加載loadCmds并查找__interpose
及__DATA
段,讀取段信息保存到fgInterposingTuples中,然后調用applyInterposing预厌,內部調用recursiveApplyInterposing
建炫,通過這個函數(shù)調用到doInterpose
,同樣以ImageLoaderMachOCompressed為例:
void ImageLoaderMachOCompressed::doInterpose(const LinkContext& context)
{
if ( context.verboseInterposing )
dyld::log("dyld: interposing %lu tuples onto image: %s\n", fgInterposingTuples.size(), this->getPath());
// update prebound symbols
eachBind(context, ^(const LinkContext& ctx, ImageLoaderMachOCompressed* image,
uintptr_t addr, uint8_t type, const char* symbolName,
uint8_t symbolFlags, intptr_t addend, long libraryOrdinal,
ExtraBindData *extraBindData,
const char* msg, LastLookup* last, bool runResolver) {
return ImageLoaderMachOCompressed::interposeAt(ctx, image, addr, type, symbolName, symbolFlags,
addend, libraryOrdinal, extraBindData,
msg, last, runResolver);
});
eachLazyBind(context, ^(const LinkContext& ctx, ImageLoaderMachOCompressed* image,
uintptr_t addr, uint8_t type, const char* symbolName,
uint8_t symbolFlags, intptr_t addend, long libraryOrdinal,
ExtraBindData *extraBindData,
const char* msg, LastLookup* last, bool runResolver) {
return ImageLoaderMachOCompressed::interposeAt(ctx, image, addr, type, symbolName, symbolFlags,
addend, libraryOrdinal, extraBindData,
msg, last, runResolver);
});
}
這里eachBind與eachLazyBind都調用了interposeAt断盛,interposeAt通過interposedAddress在上文提到的fgInterposingTuples中找到需要替換的符號地址進行替換
- 弱符號綁定
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide,
int argc, const char* argv[], const char* envp[], const char* apple[],
uintptr_t* startGlue)
{
...
// <rdar://problem/12186933> do weak binding only after all inserted images linked
sMainExecutable->weakBind(gLinkContext);
...
}
void ImageLoader::weakBind(const LinkContext& context)
{
...
// get set of ImageLoaders that participate in coalecsing
ImageLoader* imagesNeedingCoalescing[fgImagesRequiringCoalescing];
unsigned imageIndexes[fgImagesRequiringCoalescing];
// 合并所有動態(tài)庫的弱符號到列表中
int count = context.getCoalescedImages(imagesNeedingCoalescing, imageIndexes);
// count how many have not already had weakbinding done
int countNotYetWeakBound = 0;
int countOfImagesWithWeakDefinitionsNotInSharedCache = 0;
for(int i=0; i < count; ++i) {
if ( ! imagesNeedingCoalescing[i]->weakSymbolsBound(imageIndexes[i]) )
// 獲取未進行綁定的弱符號的個數(shù)
++countNotYetWeakBound;
if ( ! imagesNeedingCoalescing[i]->inSharedCache() )
// 獲取在共享緩存中已綁定的弱符號個數(shù)
++countOfImagesWithWeakDefinitionsNotInSharedCache;
}
// don't need to do any coalescing if only one image has overrides, or all have already been done
if ( (countOfImagesWithWeakDefinitionsNotInSharedCache > 0) && (countNotYetWeakBound > 0) ) {
// make symbol iterators for each
ImageLoader::CoalIterator iterators[count];
ImageLoader::CoalIterator* sortedIts[count];
for(int i=0; i < count; ++i) {
// 對需要綁定的弱符號排序
imagesNeedingCoalescing[i]->initializeCoalIterator(iterators[i], i, imageIndexes[i]);
sortedIts[i] = &iterators[i];
if ( context.verboseWeakBind )
dyld::log("dyld: weak bind load order %d/%d for %s\n", i, count, imagesNeedingCoalescing[i]->getIndexedPath(imageIndexes[i]));
}
// walk all symbols keeping iterators in sync by
// only ever incrementing the iterator with the lowest symbol
int doneCount = 0;
while ( doneCount != count ) {
//for(int i=0; i < count; ++i)
// dyld::log("sym[%d]=%s ", sortedIts[i]->loadOrder, sortedIts[i]->symbolName);
//dyld::log("\n");
// increment iterator with lowest symbol
// 計算弱符號偏移量及大小罗洗,綁定弱符號
if ( sortedIts[0]->image->incrementCoalIterator(*sortedIts[0]) )
++doneCount;
...
}
}
主要流程:合并所有動態(tài)庫的弱符號到列表中->對需要綁定的弱符號排序->計算弱符號偏移量及大小,綁定弱符號
- 初始化主程序
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide,
int argc, const char* argv[], const char* envp[], const char* apple[],
uintptr_t* startGlue)
{
...
CRSetCrashLogMessage("dyld: launch, running initializers");
#if SUPPORT_OLD_CRT_INITIALIZATION
// Old way is to run initializers via a callback from crt1.o
if ( ! gRunInitializersOldWay )
initializeMainExecutable();
#else
// run all initializers
initializeMainExecutable();
#endif
// notify any montoring proccesses that this process is about to enter main()
if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
dyld3::kdebug_trace_dyld_duration_end(launchTraceID, DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, 0, 0, 2);
}
notifyMonitoringDyldMain();
...
}
void initializeMainExecutable()
{
// record that we've reached this step
gLinkContext.startedInitializingMainExecutable = true;
// run initialzers for any inserted dylibs
ImageLoader::InitializerTimingList initializerTimes[allImagesCount()];
initializerTimes[0].count = 0;
const size_t rootCount = sImageRoots.size();
if ( rootCount > 1 ) {
for(size_t i=1; i < rootCount; ++i) {
// 初始化動態(tài)庫
sImageRoots[i]->runInitializers(gLinkContext, initializerTimes[0]);
}
}
// run initializers for main executable and everything it brings up
// 初始化主程序
sMainExecutable->runInitializers(gLinkContext, initializerTimes[0]);
// register cxa_atexit() handler to run static terminators in all loaded images when this process exits
if ( gLibSystemHelpers != NULL )
(*gLibSystemHelpers->cxa_atexit)(&runAllStaticTerminators, NULL, NULL);
// dump info if requested
if ( sEnv.DYLD_PRINT_STATISTICS )
ImageLoader::printStatistics((unsigned int)allImagesCount(), initializerTimes[0]);
if ( sEnv.DYLD_PRINT_STATISTICS_DETAILS )
ImageLoaderMachO::printStatisticsDetails((unsigned int)allImagesCount(), initializerTimes[0]);
}
先初始化動態(tài)庫钢猛,然后初始化主程序伙菜。上文提到的DYLD_PRINT_STATISTICS
環(huán)境變量在這里也出現(xiàn)了,除此之外還有個detail版的環(huán)境變量DYLD_PRINT_STATISTICS_DETAILS
void ImageLoader::runInitializers(const LinkContext& context, InitializerTimingList& timingInfo)
{
uint64_t t1 = mach_absolute_time();
mach_port_t thisThread = mach_thread_self();
ImageLoader::UninitedUpwards up;
up.count = 1;
up.images[0] = this;
processInitializers(context, thisThread, timingInfo, up);
context.notifyBatch(dyld_image_state_initialized, false);
mach_port_deallocate(mach_task_self(), thisThread);
uint64_t t2 = mach_absolute_time();
fgTotalInitTime += (t2 - t1);
}
void ImageLoader::processInitializers(const LinkContext& context, mach_port_t thisThread,
InitializerTimingList& timingInfo, ImageLoader::UninitedUpwards& images)
{
uint32_t maxImageCount = context.imageCount()+2;
ImageLoader::UninitedUpwards upsBuffer[maxImageCount];
ImageLoader::UninitedUpwards& ups = upsBuffer[0];
ups.count = 0;
// Calling recursive init on all images in images list, building a new list of
// uninitialized upward dependencies.
for (uintptr_t i=0; i < images.count; ++i) {
images.images[i]->recursiveInitialization(context, thisThread, images.images[i]->getPath(), timingInfo, ups);
}
// If any upward dependencies remain, init them.
if ( ups.count > 0 )
processInitializers(context, thisThread, timingInfo, ups);
}
動態(tài)庫和主程序的初始化是調用runInitializers
命迈,內部通過processInitializers
調用recursiveInitialization
遞歸初始化當前image鎖依賴的庫
void ImageLoader::recursiveInitialization(const LinkContext& context, mach_port_t this_thread, const char* pathToInitialize,
InitializerTimingList& timingInfo, UninitedUpwards& uninitUps)
{
recursive_lock lock_info(this_thread);
recursiveSpinLock(lock_info);
if ( fState < dyld_image_state_dependents_initialized-1 ) {
uint8_t oldState = fState;
// break cycles
fState = dyld_image_state_dependents_initialized-1;
try {
// initialize lower level libraries first
for(unsigned int i=0; i < libraryCount(); ++i) {
ImageLoader* dependentImage = libImage(i);
if ( dependentImage != NULL ) {
// don't try to initialize stuff "above" me yet
if ( libIsUpward(i) ) {
uninitUps.images[uninitUps.count] = dependentImage;
uninitUps.count++;
}
else if ( dependentImage->fDepth >= fDepth ) {
dependentImage->recursiveInitialization(context, this_thread, libPath(i), timingInfo, uninitUps);
}
}
}
// record termination order
if ( this->needsTermination() )
context.terminationRecorder(this);
// let objc know we are about to initialize this image
uint64_t t1 = mach_absolute_time();
fState = dyld_image_state_dependents_initialized;
oldState = fState;
context.notifySingle(dyld_image_state_dependents_initialized, this, &timingInfo);
// initialize this image
bool hasInitializers = this->doInitialization(context);
// let anyone know we finished initializing this image
fState = dyld_image_state_initialized;
oldState = fState;
context.notifySingle(dyld_image_state_initialized, this, NULL);
if ( hasInitializers ) {
uint64_t t2 = mach_absolute_time();
timingInfo.addTime(this->getShortName(), t2-t1);
}
}
catch (const char* msg) {
// this image is not initialized
fState = oldState;
recursiveSpinUnLock();
throw;
}
}
recursiveSpinUnLock();
}
遞歸初始化很簡單沒啥好說的贩绕,注意內部有個調用context.notifySingle(dyld_image_state_initialized, this, NULL)
火的,其實每次image狀態(tài)改變都會調用notifySingle
這個方法:
static void notifySingle(dyld_image_states state, const ImageLoader* image, ImageLoader::InitializerTimingList* timingInfo)
{
//dyld::log("notifySingle(state=%d, image=%s)\n", state, image->getPath());
std::vector<dyld_image_state_change_handler>* handlers = stateToHandlers(state, sSingleHandlers);
if ( handlers != NULL ) {
dyld_image_info info;
info.imageLoadAddress = image->machHeader();
info.imageFilePath = image->getRealPath();
info.imageFileModDate = image->lastModified();
for (std::vector<dyld_image_state_change_handler>::iterator it = handlers->begin(); it != handlers->end(); ++it) {
const char* result = (*it)(state, 1, &info);
if ( (result != NULL) && (state == dyld_image_state_mapped) ) {
//fprintf(stderr, " image rejected by handler=%p\n", *it);
// make copy of thrown string so that later catch clauses can free it
const char* str = strdup(result);
throw str;
}
}
}
if ( state == dyld_image_state_mapped ) {
// <rdar://problem/7008875> Save load addr + UUID for images from outside the shared cache
if ( !image->inSharedCache() ) {
dyld_uuid_info info;
if ( image->getUUID(info.imageUUID) ) {
info.imageLoadAddress = image->machHeader();
addNonSharedCacheImageUUID(info);
}
}
}
if ( (state == dyld_image_state_dependents_initialized) && (sNotifyObjCInit != NULL) && image->notifyObjC() ) {
uint64_t t0 = mach_absolute_time();
dyld3::ScopedTimer timer(DBG_DYLD_TIMING_OBJC_INIT, (uint64_t)image->machHeader(), 0, 0);
(*sNotifyObjCInit)(image->getRealPath(), image->machHeader());
uint64_t t1 = mach_absolute_time();
uint64_t t2 = mach_absolute_time();
uint64_t timeInObjC = t1-t0;
uint64_t emptyTime = (t2-t1)*100;
if ( (timeInObjC > emptyTime) && (timingInfo != NULL) ) {
timingInfo->addTime(image->getShortName(), timeInObjC);
}
}
// mach message csdlc about dynamically unloaded images
if ( image->addFuncNotified() && (state == dyld_image_state_terminated) ) {
notifyKernel(*image, false);
const struct mach_header* loadAddress[] = { image->machHeader() };
const char* loadPath[] = { image->getPath() };
notifyMonitoringDyld(true, 1, loadAddress, loadPath);
}
}
可見,當state == dyld_image_state_mapped
時淑倾,將image對應的UUID存起來馏鹤,當state == dyld_image_state_dependents_initialized
并且有sNotifyObjCInit
回調時調用sNotifyObjCInit
函數(shù)。
搜索回調函數(shù)賦值入口:
void registerObjCNotifiers(_dyld_objc_notify_mapped mapped, _dyld_objc_notify_init init, _dyld_objc_notify_unmapped unmapped)
{
// record functions to call
sNotifyObjCMapped = mapped;
sNotifyObjCInit = init;
sNotifyObjCUnmapped = unmapped;
...
}
void _dyld_objc_notify_register(_dyld_objc_notify_mapped mapped,
_dyld_objc_notify_init init,
_dyld_objc_notify_unmapped unmapped)
{
dyld::registerObjCNotifiers(mapped, init, unmapped);
}
發(fā)現(xiàn)是通過_dyld_objc_notify_register
這個函數(shù)注冊回調的娇哆,回到文章開頭符號斷點[NSObject load]
截圖中的堆棧:
* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.2
* frame #0: 0x000000010944f3b1 libobjc.A.dylib`+[NSObject load]
frame #1: 0x000000010943d317 libobjc.A.dylib`call_load_methods + 691
frame #2: 0x000000010943e814 libobjc.A.dylib`load_images + 77
frame #3: 0x0000000108b73b97 dyld_sim`dyld::registerObjCNotifiers(void (*)(unsigned int, char const* const*, mach_header const* const*), void (*)(char const*, mach_header const*), void (*)(char const*, mach_header const*)) + 260
frame #4: 0x000000010b779bf3 libdyld.dylib`_dyld_objc_notify_register + 113
frame #5: 0x000000010944ca12 libobjc.A.dylib`_objc_init + 115
frame #6: 0x000000010b7015c0 libdispatch.dylib`_os_object_init + 13
frame #7: 0x000000010b70f4e5 libdispatch.dylib`libdispatch_init + 300
frame #8: 0x0000000109e05a78 libSystem.B.dylib`libSystem_initializer + 164
frame #9: 0x0000000108b82b96 dyld_sim`ImageLoaderMachO::doModInitFunctions(ImageLoader::LinkContext const&) + 506
frame #10: 0x0000000108b82d9c dyld_sim`ImageLoaderMachO::doInitialization(ImageLoader::LinkContext const&) + 40
frame #11: 0x0000000108b7e3fc dyld_sim`ImageLoader::recursiveInitialization(ImageLoader::LinkContext const&, unsigned int, char const*, ImageLoader::InitializerTimingList&, ImageLoader::UninitedUpwards&) + 324
frame #12: 0x0000000108b7e392 dyld_sim`ImageLoader::recursiveInitialization(ImageLoader::LinkContext const&, unsigned int, char const*, ImageLoader::InitializerTimingList&, ImageLoader::UninitedUpwards&) + 218
frame #13: 0x0000000108b7d5d3 dyld_sim`ImageLoader::processInitializers(ImageLoader::LinkContext const&, unsigned int, ImageLoader::InitializerTimingList&, ImageLoader::UninitedUpwards&) + 133
frame #14: 0x0000000108b7d665 dyld_sim`ImageLoader::runInitializers(ImageLoader::LinkContext const&, ImageLoader::InitializerTimingList&) + 73
frame #15: 0x0000000108b71333 dyld_sim`dyld::initializeMainExecutable() + 129
frame #16: 0x0000000108b75434 dyld_sim`dyld::_main(macho_header const*, unsigned long, int, char const**, char const**, char const**, unsigned long*) + 4384
frame #17: 0x0000000108b70630 dyld_sim`start_sim + 136
frame #18: 0x00000001155c1234 dyld`dyld::useSimulatorDyld(int, macho_header const*, char const*, int, char const**, char const**, char const**, unsigned long*, unsigned long*) + 2238
frame #19: 0x00000001155bf0ce dyld`dyld::_main(macho_header const*, unsigned long, int, char const**, char const**, char const**, unsigned long*) + 522
frame #20: 0x00000001155ba503 dyld`dyldbootstrap::start(macho_header const*, int, char const**, long, macho_header const*, unsigned long*) + 1167
frame #21: 0x00000001155ba036 dyld`_dyld_start + 54
可以看到湃累,_dyld_objc_notify_register
是在初始化libobjc.A.dylib
這個動態(tài)庫時調用的,然后_objc_init
內部調用了load_images
迂尝,進而調用call_load_methods
脱茉,從而調用各個類中的load
方法,感興趣可以下載源碼查看具體流程
notifySingle
調用完畢后垄开,開始真正初始化工作doInitialization
:
bool ImageLoaderMachO::doInitialization(const LinkContext& context)
{
CRSetCrashLogMessage2(this->getPath());
// mach-o has -init and static initializers
doImageInit(context);
doModInitFunctions(context);
CRSetCrashLogMessage2(NULL);
return (fHasDashInit || fHasInitializers);
}
doImageInit
執(zhí)行LC_ROUTINES_COMMAND
segment中保存的函數(shù)琴许,doModInitFunctions
執(zhí)行__DATA,__mod_init_func
section中保存的函數(shù)。這個section中保存的是C++的構造函數(shù)及帶有attribute((constructor))的C函數(shù)溉躲,簡單驗證一下:
class Test {
public:
Test();
};
Test::Test(){
NSLog(@"%s", __func__);
}
Test test;
__attribute__((constructor)) void testConstructor() {
NSLog(@"%s", __func__);
}
同樣榜田,通過MachOView也可以看到:
顯然,__mod_init_func中的函數(shù)在類對應的load方法之后調用锻梳。
- 查找主程序入口函數(shù)指針并返回
uintptr_t
_main(const macho_header* mainExecutableMH, uintptr_t mainExecutableSlide,
int argc, const char* argv[], const char* envp[], const char* apple[],
uintptr_t* startGlue)
{
...
// find entry point for main executable
result = (uintptr_t)sMainExecutable->getEntryFromLC_MAIN();
if ( result != 0 ) {
// main executable uses LC_MAIN, we need to use helper in libdyld to call into main()
if ( (gLibSystemHelpers != NULL) && (gLibSystemHelpers->version >= 9) )
*startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
else
halt("libdyld.dylib support not present for LC_MAIN");
}
else {
// main executable uses LC_UNIXTHREAD, dyld needs to let "start" in program set up for main()
result = (uintptr_t)sMainExecutable->getEntryFromLC_UNIXTHREAD();
*startGlue = 0;
}
#if __has_feature(ptrauth_calls)
// start() calls the result pointer as a function pointer so we need to sign it.
result = (uintptr_t)__builtin_ptrauth_sign_unauthenticated((void*)result, 0, 0);
#endif
}
catch(const char* message) {
syncAllImages();
halt(message);
}
catch(...) {
dyld::log("dyld: launch failed\n");
}
CRSetCrashLogMessage("dyld2 mode");
if (sSkipMain) {
if (dyld3::kdebug_trace_dyld_enabled(DBG_DYLD_TIMING_LAUNCH_EXECUTABLE)) {
dyld3::kdebug_trace_dyld_duration_end(launchTraceID, DBG_DYLD_TIMING_LAUNCH_EXECUTABLE, 0, 0, 2);
}
result = (uintptr_t)&fake_main;
*startGlue = (uintptr_t)gLibSystemHelpers->startGlueToCallExit;
}
return result;
}
此處兩步走:調用getEntryFromLC_MAIN獲取入口箭券,如果沒有入口則調用getEntryFromLC_UNIXTHREAD獲取入口。這個入口就是主程序main函數(shù)的地址
void* ImageLoaderMachO::getEntryFromLC_MAIN() const
{
const uint32_t cmd_count = ((macho_header*)fMachOData)->ncmds;
const struct load_command* const cmds = (struct load_command*)&fMachOData[sizeof(macho_header)];
const struct load_command* cmd = cmds;
for (uint32_t i = 0; i < cmd_count; ++i) {
if ( cmd->cmd == LC_MAIN ) {
entry_point_command* mainCmd = (entry_point_command*)cmd;
void* entry = (void*)(mainCmd->entryoff + (char*)fMachOData);
// <rdar://problem/8543820&9228031> verify entry point is in image
if ( this->containsAddress(entry) )
return entry;
else
throw "LC_MAIN entryoff is out of range";
}
cmd = (const struct load_command*)(((char*)cmd)+cmd->cmdsize);
}
return NULL;
}
void* ImageLoaderMachO::getEntryFromLC_UNIXTHREAD() const
{
const uint32_t cmd_count = ((macho_header*)fMachOData)->ncmds;
const struct load_command* const cmds = (struct load_command*)&fMachOData[sizeof(macho_header)];
const struct load_command* cmd = cmds;
for (uint32_t i = 0; i < cmd_count; ++i) {
if ( cmd->cmd == LC_UNIXTHREAD ) {
#if __i386__
const i386_thread_state_t* registers = (i386_thread_state_t*)(((char*)cmd) + 16);
void* entry = (void*)(registers->eip + fSlide);
// <rdar://problem/8543820&9228031> verify entry point is in image
if ( this->containsAddress(entry) )
return entry;
#elif __x86_64__
const x86_thread_state64_t* registers = (x86_thread_state64_t*)(((char*)cmd) + 16);
void* entry = (void*)(registers->rip + fSlide);
// <rdar://problem/8543820&9228031> verify entry point is in image
if ( this->containsAddress(entry) )
return entry;
#elif __arm64__ && !__arm64e__
// temp support until <rdar://39514191> is fixed
const uint64_t* regs64 = (uint64_t*)(((char*)cmd) + 16);
void* entry = (void*)(regs64[32] + fSlide); // arm_thread_state64_t.__pc
// <rdar://problem/8543820&9228031> verify entry point is in image
if ( this->containsAddress(entry) )
return entry;
#endif
}
cmd = (const struct load_command*)(((char*)cmd)+cmd->cmdsize);
}
throw "no valid entry point";
}
可以看到疑枯,入口是在load_command的LC_MAIN
或者LC_UNIXTHREAD
中
受能力所限辩块,可能存在部分理解偏差,歡迎指正荆永。
Have fun!