論文閱讀—Emotion-Cause Pair Extraction:A New Task to Emotion Analysis in Texts

論文地址:https://aclanthology.org/P19-1096.pdf

背景

情緒原因提取(ECE)旨在提取導(dǎo)致文本中情緒表達(dá)的潛在原因炫惩。

Figure 1 displays an example from this corpus, There are five clauses in a document.
The emotion "happy" is contained in the fourth clause. We denote this clause as emotion clause, which refers to a clause that contains emotions. It has two corresponding causes: "a policeman visited the old man with the lost money" in the second clause, and "told him that the thief was caught" in the third clause.
We denote them as cause clause, which refers to a clause that contains causes.


Figure 1: An example showing the difference between the ECE task and the ECPE task.

Take Figure 1 for example, given the annotation of emotion: "happy", the goal of ECE is to track the two corresponding cause clauses: "a policeman visited the old man with the lost money" and "and told him that the thief was caught". While in the ECPE task, the goal is to directly extract all pairs of emotion clause and cause clause, including ("The old man was very happy", "a policeman visited the old man with the lost money") and ("The old man was very happy", "and told him that the thief was caught"), without providing the emotion annotation "happy".

問題

1) 在ECE中蹋绽,在提取原因之前必須對(duì)情緒進(jìn)行注釋筋蓖,這極大地限制了其在現(xiàn)實(shí)世界場(chǎng)景中的應(yīng)用;
2) 先注釋情緒蚣抗,然后提取原因的方法忽略了情緒和原因是相互指示的這一事實(shí)瓮下。

解決辦法

我們提出了一種兩步方法來解決這一新的ECPE任務(wù)——
步驟1通過兩種多任務(wù)學(xué)習(xí)網(wǎng)絡(luò)將情緒-原因?qū)μ崛∪蝿?wù)轉(zhuǎn)換為兩個(gè)子任務(wù)(分別為情緒提取和原因提确砘怠),目的是提取一組情緒從句和一組原因從句迷捧。

Figure 2: The Model for Independent Multi-task Learning (Indep).

The lower layer consists of a set of word-level Bi-LSTM modules, each of which corresponds to one clause, and accumulate the context information for each word of the clause. The hidden state of the jth word in the ith clause hi,j is obtained based on a bi-directional LSTM. Attention mechanism is then adopt to get a clause representation si.
The upper layer consists of two components: one for emotion extraction and another for cause extraction. Each component is a clause-level BiLSTM which receives the independent clause representations [s1, s2, ..., s|d|] obtained at the lower layer as inputs. The hidden states of two component Bi-LSTM, re i and rc i , can be viewed as the context-aware representation of clause ci, and finally feed to the softmax layer for emotion prediction and cause predication.

由于提供情緒可以幫助更好地發(fā)現(xiàn)原因笙蒙;了解原因也可能有助于更準(zhǔn)確地提取情緒手趣。受此啟發(fā)绿渣,我們進(jìn)一步提出了an interactive multi-task learning network中符,作為前一個(gè)網(wǎng)絡(luò)的增強(qiáng)版本淀散,以捕捉情緒和原因之間的相關(guān)性蚜锨。其結(jié)構(gòu)如圖3所示。


Figure 3: Two Models for Interactive Multi-task Learning: (a) Inter-EC, which uses emotion extraction to improve cause extraction (b) Inter-CE, which uses cause extraction to enhance emotion extraction.

步驟2執(zhí)行情感原因配對(duì)和過濾亚再。我們通過將笛卡爾乘積應(yīng)用于情感集E和原因集C郭膛,將它們配對(duì)氛悬。這就產(chǎn)生了一組候選的情緒-原因?qū)ΑW詈笥?xùn)練一個(gè)濾波器來消除不包含因果關(guān)系的對(duì)如捅。

相關(guān)工作

Cheng等人(2017)專注于使用多用戶結(jié)構(gòu)對(duì)中國微博進(jìn)行原因檢測(cè)棍现。他們正式化了微博的兩個(gè)原因檢測(cè)任務(wù)(基于當(dāng)前子轉(zhuǎn)發(fā)的原因檢測(cè)和基于原始子轉(zhuǎn)發(fā)的理由檢測(cè))镜遣,并引入了SVM和LSTM來處理它們己肮。
Chen等人(2018a)提出了一種分層卷積神經(jīng)網(wǎng)絡(luò)(Hier-CNN),該網(wǎng)絡(luò)使用子句級(jí)編碼器和子轉(zhuǎn)發(fā)級(jí)編碼器分別結(jié)合單詞上下文特征和基于事件的特征烈涮。

實(shí)驗(yàn)

數(shù)據(jù)集
[1]GUI L, WU D, XU R, 等. Event-driven emotion cause extraction with corpus construction[C/OL]//Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas. 2016. http://dx.doi.org/10.18653/v1/d16-1170. DOI:10.18653/v1/d16-1170.

數(shù)據(jù)集的針對(duì)是否多標(biāo)簽簡(jiǎn)單劃分見表1。
Table 1: The proportion of documents with different number of emotion-cause pairs in the merged dataset.

評(píng)價(jià)指標(biāo)
the precision, recall, and F1 score

效果
Table 2: Experimental results of all proposed models and variants using precision, recall, and F1-measure as metrics on the ECPE task as well as the two sub-tasks.

貢獻(xiàn)

我們提出了一個(gè)新的任務(wù):情緒-原因配對(duì)提取(ECPE)讶舰。它解決了傳統(tǒng)ECE任務(wù)在提取原因之前依賴于對(duì)情緒的注釋的缺點(diǎn)肋乍,并允許將情緒原因分析應(yīng)用于真實(shí)世界的場(chǎng)景

我們提出了一個(gè)兩步框架來解決ECPE任務(wù),該任務(wù)首先執(zhí)行個(gè)人情緒提取和原因提取敷存,然后進(jìn)行情緒-原因配對(duì)和過濾觅闽。

?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請(qǐng)聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個(gè)濱河市涮俄,隨后出現(xiàn)的幾起案子蛉拙,更是在濱河造成了極大的恐慌,老刑警劉巖彻亲,帶你破解...
    沈念sama閱讀 221,576評(píng)論 6 515
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件孕锄,死亡現(xiàn)場(chǎng)離奇詭異,居然都是意外死亡苞尝,警方通過查閱死者的電腦和手機(jī)畸肆,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 94,515評(píng)論 3 399
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來宙址,“玉大人恼除,你說我怎么就攤上這事÷眨” “怎么了?”我有些...
    開封第一講書人閱讀 168,017評(píng)論 0 360
  • 文/不壞的土叔 我叫張陵令野,是天一觀的道長(zhǎng)舀患。 經(jīng)常有香客問我,道長(zhǎng)气破,這世上最難降的妖魔是什么聊浅? 我笑而不...
    開封第一講書人閱讀 59,626評(píng)論 1 296
  • 正文 為了忘掉前任,我火速辦了婚禮现使,結(jié)果婚禮上低匙,老公的妹妹穿的比我還像新娘。我一直安慰自己碳锈,他們只是感情好顽冶,可當(dāng)我...
    茶點(diǎn)故事閱讀 68,625評(píng)論 6 397
  • 文/花漫 我一把揭開白布。 她就那樣靜靜地躺著售碳,像睡著了一般强重。 火紅的嫁衣襯著肌膚如雪绞呈。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 52,255評(píng)論 1 308
  • 那天间景,我揣著相機(jī)與錄音佃声,去河邊找鬼。 笑死倘要,一個(gè)胖子當(dāng)著我的面吹牛圾亏,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播封拧,決...
    沈念sama閱讀 40,825評(píng)論 3 421
  • 文/蒼蘭香墨 我猛地睜開眼志鹃,長(zhǎng)吁一口氣:“原來是場(chǎng)噩夢(mèng)啊……” “哼!你這毒婦竟也來了哮缺?” 一聲冷哼從身側(cè)響起弄跌,我...
    開封第一講書人閱讀 39,729評(píng)論 0 276
  • 序言:老撾萬榮一對(duì)情侶失蹤,失蹤者是張志新(化名)和其女友劉穎尝苇,沒想到半個(gè)月后铛只,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 46,271評(píng)論 1 320
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡糠溜,尸身上長(zhǎng)有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 38,363評(píng)論 3 340
  • 正文 我和宋清朗相戀三年淳玩,在試婚紗的時(shí)候發(fā)現(xiàn)自己被綠了。 大學(xué)時(shí)的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片非竿。...
    茶點(diǎn)故事閱讀 40,498評(píng)論 1 352
  • 序言:一個(gè)原本活蹦亂跳的男人離奇死亡蜕着,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出红柱,到底是詐尸還是另有隱情承匣,我是刑警寧澤,帶...
    沈念sama閱讀 36,183評(píng)論 5 350
  • 正文 年R本政府宣布锤悄,位于F島的核電站韧骗,受9級(jí)特大地震影響,放射性物質(zhì)發(fā)生泄漏零聚。R本人自食惡果不足惜袍暴,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,867評(píng)論 3 333
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望隶症。 院中可真熱鬧政模,春花似錦、人聲如沸蚂会。這莊子的主人今日做“春日...
    開封第一講書人閱讀 32,338評(píng)論 0 24
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽颂龙。三九已至习蓬,卻和暖如春纽什,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背躲叼。 一陣腳步聲響...
    開封第一講書人閱讀 33,458評(píng)論 1 272
  • 我被黑心中介騙來泰國打工芦缰, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人枫慷。 一個(gè)月前我還...
    沈念sama閱讀 48,906評(píng)論 3 376
  • 正文 我出身青樓让蕾,卻偏偏與公主長(zhǎng)得像,于是被迫代替她去往敵國和親或听。 傳聞我的和親對(duì)象是個(gè)殘疾皇子探孝,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 45,507評(píng)論 2 359

推薦閱讀更多精彩內(nèi)容