Reconstruction of development landscape based on scRNA-seq

There are several basic questions of developmental biology :
  1. What classes of cells are present at each stage?

  2. For the cells in each class, what was their origin at earlier stages, what are their potential fates at later stages, and what is the actual outcome of a given cell?

  3. To what extent are events along a path synchronous or asynchronous?

  4. What are the genetic regulatory programs that control each path?

  5. What are the intercellular interactions between classes of cells?

  6. How deterministic or stochastic is the process—that is: if, and how early, does it become determined that a particular cell or an entire cell class is destined to a specific fate?

The resolution level of single cell can be used to analyze the early development process of embryo , cell atlase of the development landscape represents an important step towards understanding organogenesis, which can contains continuous time and spatial information of the cell, here we focus on trajectory inference of organogenesis: #1choose distinguish factors in cell phase transition
1.1based on prior knowledge such as capture times (DeLorean) or switch-like marker genes (Ouija);
1.2select gene with high depersion across cells;
1.3ordering based on genes that differ between clusters and define a cell's progress

Sum: It is difficult to reconstruct the development trajectory of single cells due to the lack of known reference genes for the transition point of biological state, or when reference genes are insufficient to span the entire observation period window.

2 Modeling specific types of biological processes such as branching processes in differentiation (multiple methods) or cyclic processes (Oscope) to infer pseudotime

2.1Laleh develop a pseudotime measure call diffusion pseudotime (DPT), which measures transitions between cells using diffusion-like random walks. DPT implementations make it possible to reconstruct the developmental progression of cells and identify transient or metastable states, branching decisions and differentiation endpoints. (Laleh et al.,2016).

2.2Saelens et al. 2018 performed a comprehensive evaluation of 29 different single-cell trajectory inference methods and discuss the different types of algorithms in more detail. They benchmark both quantitative performance and assess software quality.

Sum: During development, the state of the cells is constantly changing and not synchronous. ScRNA-Seq can separate the cells in the middle state of the process, and use algorithms to learn the expression patterns of all cells to arrange them into their respective developmental trajectories.

we focus on trajectory inference of organogenesis:
This protocol is to sample at even interval time points to obtain a sufficient number of cells of single-cell transcriptome data, then it can be assumed in the analysis that these single cells are in a continuously changing state, and have cells in both continuous time and spatial information. ( Blanca et al.,2019)Thus, all of these cells can be arranged by pseudo-time and other path reduction algorithms (Trapnell et al., 2014). To validate this reconstructed development trajectory, they focused on reconstructing skeletal myogenesis, which comprises distinct mesodermal lineages, the trajectory is consistent with the hypothesis that different mesodermal lineages use distinct factors to converge on a core program of muscle genes. (Cao et al.,2019) Monocle has high accuracy and can be easily transplanted into other types of cell data analysis. I tried the sample code of the monocle test data. The demo of the official website is very detailed, but it is more difficult for me to understand the algorithm. The transcripts of tens of thousands of single cells are sequenced, and it is therefore hoped that a single cell of various states will be continuously distributed in the experiment. It can increase the temporal resolution of transcriptome dynamics using single-cell RNA-Seq data collected at multiple time points.

along with pseudotime + spational transcription

3.spatial transcriptomic analysis of tissue -Landmark gene with specific loci expression is known.

View ORCID ProfileWouter Saelens, View ORCID ProfileRobrecht Cannoodt, View ORCID ProfileHelena Todorov, View ORCID ProfileYvan Saeys,A comparison of single-cell trajectory inference methods: towards more accurate and robust tools

以作者把Optimal Transport (OT)的算法,應(yīng)用到了時間序列的單細(xì)胞轉(zhuǎn)錄組數(shù)據(jù)來探索發(fā)育的過程。當(dāng)然,表現(xiàn)很好的啦倔既,揭示了重編程的分子機(jī)理饰恕。 幾大發(fā)現(xiàn)如下:

·(1) identifying alternative cell fates, including senescence, apoptosis, neural identity, and placental identity;

· (2) quantifying the portion of cells in each state at each time point;

· (3) inferring the probable origin(s) and fate(s) of each cell and cell class at each time point;

· (4) identifying early molecular markers associated with eventual fates;

· (5) using trajectory information to identify transcription factors (TFs) associated with the activation of different expres

部分參考:
作者:小夢游仙境 鏈接:http://www.reibang.com/p/2911b5107605 來源:簡書 簡書著作權(quán)歸作者所有忘嫉,任何形式的轉(zhuǎn)載都請聯(lián)系作者獲得授權(quán)并注明出處沟于。

最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市笋庄,隨后出現(xiàn)的幾起案子,更是在濱河造成了極大的恐慌倔监,老刑警劉巖直砂,帶你破解...
    沈念sama閱讀 216,324評論 6 498
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件,死亡現(xiàn)場離奇詭異浩习,居然都是意外死亡静暂,警方通過查閱死者的電腦和手機(jī),發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 92,356評論 3 392
  • 文/潘曉璐 我一進(jìn)店門谱秽,熙熙樓的掌柜王于貴愁眉苦臉地迎上來洽蛀,“玉大人,你說我怎么就攤上這事疟赊〗脊” “怎么了?”我有些...
    開封第一講書人閱讀 162,328評論 0 353
  • 文/不壞的土叔 我叫張陵近哟,是天一觀的道長驮审。 經(jīng)常有香客問我,道長,這世上最難降的妖魔是什么头岔? 我笑而不...
    開封第一講書人閱讀 58,147評論 1 292
  • 正文 為了忘掉前任塔拳,我火速辦了婚禮,結(jié)果婚禮上峡竣,老公的妹妹穿的比我還像新娘靠抑。我一直安慰自己,他們只是感情好适掰,可當(dāng)我...
    茶點(diǎn)故事閱讀 67,160評論 6 388
  • 文/花漫 我一把揭開白布颂碧。 她就那樣靜靜地躺著,像睡著了一般类浪。 火紅的嫁衣襯著肌膚如雪载城。 梳的紋絲不亂的頭發(fā)上,一...
    開封第一講書人閱讀 51,115評論 1 296
  • 那天费就,我揣著相機(jī)與錄音诉瓦,去河邊找鬼。 笑死力细,一個胖子當(dāng)著我的面吹牛睬澡,可吹牛的內(nèi)容都是我干的。 我是一名探鬼主播眠蚂,決...
    沈念sama閱讀 40,025評論 3 417
  • 文/蒼蘭香墨 我猛地睜開眼煞聪,長吁一口氣:“原來是場噩夢啊……” “哼!你這毒婦竟也來了逝慧?” 一聲冷哼從身側(cè)響起昔脯,我...
    開封第一講書人閱讀 38,867評論 0 274
  • 序言:老撾萬榮一對情侶失蹤,失蹤者是張志新(化名)和其女友劉穎笛臣,沒想到半個月后云稚,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體,經(jīng)...
    沈念sama閱讀 45,307評論 1 310
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡沈堡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 37,528評論 2 332
  • 正文 我和宋清朗相戀三年静陈,在試婚紗的時候發(fā)現(xiàn)自己被綠了。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片踱蛀。...
    茶點(diǎn)故事閱讀 39,688評論 1 348
  • 序言:一個原本活蹦亂跳的男人離奇死亡窿给,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出率拒,到底是詐尸還是另有隱情崩泡,我是刑警寧澤,帶...
    沈念sama閱讀 35,409評論 5 343
  • 正文 年R本政府宣布猬膨,位于F島的核電站角撞,受9級特大地震影響呛伴,放射性物質(zhì)發(fā)生泄漏。R本人自食惡果不足惜谒所,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 41,001評論 3 325
  • 文/蒙蒙 一热康、第九天 我趴在偏房一處隱蔽的房頂上張望。 院中可真熱鬧劣领,春花似錦姐军、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 31,657評論 0 22
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至村生,卻和暖如春惊暴,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背趁桃。 一陣腳步聲響...
    開封第一講書人閱讀 32,811評論 1 268
  • 我被黑心中介騙來泰國打工辽话, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人卫病。 一個月前我還...
    沈念sama閱讀 47,685評論 2 368
  • 正文 我出身青樓油啤,卻偏偏與公主長得像,于是被迫代替她去往敵國和親忽肛。 傳聞我的和親對象是個殘疾皇子村砂,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 44,573評論 2 353

推薦閱讀更多精彩內(nèi)容