leetcode-Partition Equal Subset Sum

Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.

Note:
Each of the array element will not exceed 100.
The array size will not exceed 200.
Example 1:

Input: [1, 5, 11, 5]

Output: true

Explanation: The array can be partitioned as [1, 5, 5] and [11].
Example 2:

Input: [1, 2, 3, 5]

Output: false

Explanation: The array cannot be partitioned into equal sum subsets.

解:
1.nums和一定是被2整除。
2.定義一個一維的dp數(shù)組瞻离,其中dp[i]表示數(shù)字i是否是原數(shù)組的任意個子集合之和秉溉,那么我們我們最后只需要返回dp[target]就行了。我們初始化dp[0]為true饮潦,由于題目中限制了所有數(shù)字為正數(shù)燃异,那么我們就不用擔(dān)心會出現(xiàn)和為0或者負(fù)數(shù)的情況。
3.關(guān)鍵問題就是要找出狀態(tài)轉(zhuǎn)移方程了继蜡,我們需要遍歷原數(shù)組中的數(shù)字回俐,對于遍歷到的每個數(shù)字nums[i],我們需要更新dp數(shù)組稀并,要更新[nums[i], target]之間的值仅颇,那么對于這個區(qū)間中的任意一個數(shù)字j,如果dp[j - nums[i]]為true的話碘举,那么dp[j]就一定為true忘瓦,于是狀態(tài)轉(zhuǎn)移方程如下:

dp[j] = dp[j] || dp[j - nums[i]] (nums[i] <= j <= target)

public boolean canPartition(int[] nums) {
    int sum = 0;
    
    for (int num : nums) {
        sum += num;
    }
    
    if ((sum & 1) == 1) {
        return false;
    }
    sum /= 2;

    int n = nums.length;
    boolean[][] dp = new boolean[n+1][sum+1];
    for (int i = 0; i < dp.length; i++) {
        Arrays.fill(dp[i], false);
    }
    
    dp[0][0] = true;
    
    for (int i = 1; i < n+1; i++) {
        dp[i][0] = true;
    }
    for (int j = 1; j < sum+1; j++) {
        dp[0][j] = false;
    }
    
    for (int i = 1; i < n+1; i++) {
        for (int j = 1; j < sum+1; j++) {
            dp[i][j] = dp[i-1][j];
            if (j >= nums[i-1]) {
                dp[i][j] = (dp[i][j] || dp[i-1][j-nums[i-1]]);
            }
        }
    }
   
    return dp[n][sum];
}

優(yōu)化方法:

public boolean canPartition(int[] nums) {
    int sum = 0;
    
    for (int num : nums) {
        sum += num;
    }
    
    if ((sum & 1) == 1) {
        return false;
    }
    sum /= 2;
    
    int n = nums.length;
    boolean[] dp = new boolean[sum+1];
    Arrays.fill(dp, false);
    dp[0] = true;
    
    for (int num : nums) {
        for (int i = sum; i > 0; i--) {
            if (i >= num) {
                dp[i] = dp[i] || dp[i-num];
            }
        }
    }
    
    return dp[sum];
}
最后編輯于
?著作權(quán)歸作者所有,轉(zhuǎn)載或內(nèi)容合作請聯(lián)系作者
  • 序言:七十年代末,一起剝皮案震驚了整個濱河市引颈,隨后出現(xiàn)的幾起案子耕皮,更是在濱河造成了極大的恐慌,老刑警劉巖蝙场,帶你破解...
    沈念sama閱讀 211,042評論 6 490
  • 序言:濱河連續(xù)發(fā)生了三起死亡事件凌停,死亡現(xiàn)場離奇詭異,居然都是意外死亡售滤,警方通過查閱死者的電腦和手機(jī)罚拟,發(fā)現(xiàn)死者居然都...
    沈念sama閱讀 89,996評論 2 384
  • 文/潘曉璐 我一進(jìn)店門,熙熙樓的掌柜王于貴愁眉苦臉地迎上來完箩,“玉大人赐俗,你說我怎么就攤上這事”字” “怎么了阻逮?”我有些...
    開封第一講書人閱讀 156,674評論 0 345
  • 文/不壞的土叔 我叫張陵,是天一觀的道長秩彤。 經(jīng)常有香客問我夺鲜,道長,這世上最難降的妖魔是什么呐舔? 我笑而不...
    開封第一講書人閱讀 56,340評論 1 283
  • 正文 為了忘掉前任币励,我火速辦了婚禮,結(jié)果婚禮上珊拼,老公的妹妹穿的比我還像新娘食呻。我一直安慰自己,他們只是感情好,可當(dāng)我...
    茶點(diǎn)故事閱讀 65,404評論 5 384
  • 文/花漫 我一把揭開白布仅胞。 她就那樣靜靜地躺著每辟,像睡著了一般。 火紅的嫁衣襯著肌膚如雪干旧。 梳的紋絲不亂的頭發(fā)上渠欺,一...
    開封第一講書人閱讀 49,749評論 1 289
  • 那天,我揣著相機(jī)與錄音椎眯,去河邊找鬼挠将。 笑死,一個胖子當(dāng)著我的面吹牛编整,可吹牛的內(nèi)容都是我干的舔稀。 我是一名探鬼主播,決...
    沈念sama閱讀 38,902評論 3 405
  • 文/蒼蘭香墨 我猛地睜開眼掌测,長吁一口氣:“原來是場噩夢啊……” “哼内贮!你這毒婦竟也來了?” 一聲冷哼從身側(cè)響起汞斧,我...
    開封第一講書人閱讀 37,662評論 0 266
  • 序言:老撾萬榮一對情侶失蹤夜郁,失蹤者是張志新(化名)和其女友劉穎,沒想到半個月后粘勒,有當(dāng)?shù)厝嗽跇淞掷锇l(fā)現(xiàn)了一具尸體竞端,經(jīng)...
    沈念sama閱讀 44,110評論 1 303
  • 正文 獨(dú)居荒郊野嶺守林人離奇死亡,尸身上長有42處帶血的膿包…… 初始之章·張勛 以下內(nèi)容為張勛視角 年9月15日...
    茶點(diǎn)故事閱讀 36,451評論 2 325
  • 正文 我和宋清朗相戀三年仲义,在試婚紗的時候發(fā)現(xiàn)自己被綠了婶熬。 大學(xué)時的朋友給我發(fā)了我未婚夫和他白月光在一起吃飯的照片剑勾。...
    茶點(diǎn)故事閱讀 38,577評論 1 340
  • 序言:一個原本活蹦亂跳的男人離奇死亡埃撵,死狀恐怖,靈堂內(nèi)的尸體忽然破棺而出虽另,到底是詐尸還是另有隱情暂刘,我是刑警寧澤,帶...
    沈念sama閱讀 34,258評論 4 328
  • 正文 年R本政府宣布捂刺,位于F島的核電站谣拣,受9級特大地震影響,放射性物質(zhì)發(fā)生泄漏族展。R本人自食惡果不足惜森缠,卻給世界環(huán)境...
    茶點(diǎn)故事閱讀 39,848評論 3 312
  • 文/蒙蒙 一、第九天 我趴在偏房一處隱蔽的房頂上張望仪缸。 院中可真熱鬧贵涵,春花似錦、人聲如沸。這莊子的主人今日做“春日...
    開封第一講書人閱讀 30,726評論 0 21
  • 文/蒼蘭香墨 我抬頭看了看天上的太陽。三九已至跨晴,卻和暖如春欧聘,著一層夾襖步出監(jiān)牢的瞬間,已是汗流浹背端盆。 一陣腳步聲響...
    開封第一講書人閱讀 31,952評論 1 264
  • 我被黑心中介騙來泰國打工怀骤, 沒想到剛下飛機(jī)就差點(diǎn)兒被人妖公主榨干…… 1. 我叫王不留,地道東北人爱谁。 一個月前我還...
    沈念sama閱讀 46,271評論 2 360
  • 正文 我出身青樓晒喷,卻偏偏與公主長得像,于是被迫代替她去往敵國和親访敌。 傳聞我的和親對象是個殘疾皇子凉敲,可洞房花燭夜當(dāng)晚...
    茶點(diǎn)故事閱讀 43,452評論 2 348

推薦閱讀更多精彩內(nèi)容